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Abstract
Brain-wide association studies (BWASs) have attempted to relate cognitive abilities with brain phenotypes, but have been challenged by 
issues such as predictability, test–retest reliability, and cross-cohort generalizability. To tackle these challenges, we proposed a machine 
learning “stacking” approach that draws information from whole-brain MRI across different modalities, from task-functional MRI (fMRI) 
contrasts and functional connectivity during tasks and rest to structural measures, into one prediction model. We benchmarked the 
benefits of stacking using the Human Connectome Projects: Young Adults (n = 873, 22–35 years old) and Human Connectome Projects 
—Aging (n = 504, 35–100 years old) and the Dunedin Multidisciplinary Health and Development Study (Dunedin Study, n = 754, 
45 years old). For predictability, stacked models led to out-of-sample r∼0.5–0.6 when predicting cognitive abilities at the time of 
scanning, primarily driven by task-fMRI contrasts. Notably, using the Dunedin Study, we were able to predict participants’ cognitive 
abilities at ages 7, 9, and 11 years using their multimodal MRI at age 45 years, with an out-of-sample r of 0.52. For test–retest 
reliability, stacked models reached an excellent level of reliability (interclass correlation > 0.75), even when we stacked only task- 
fMRI contrasts together. For generalizability, a stacked model with nontask MRI built from one dataset significantly predicted 
cognitive abilities in other datasets. Altogether, stacking is a viable approach to undertake the three challenges of BWAS for 
cognitive abilities.
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Significance statement

Scientists have had limited success in predicting cognitive abilities from brain MRI. We proposed a machine learning method, called 
stacking, to draw information across different types of brain MRI. Using three large databases (n = 2,131, 22–100 years old), we found 
stacking to make the prediction of cognitive abilities (i) closer to actual cognitive scores when applied to a new individual, not part of 
the modeling process, (ii) reliable over times, and (iii) applicable to the data collected from different age groups and MRI scanners. 
Indeed, stacking, especially with fMRI task contrasts, allowed us to use MRI of people aged 45 years to predict their childhood cognitive 
abilities reasonably well. Accordingly, stacking may help MRI realize its potential to predict cognitive abilities.
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Introduction
Individual differences in cognitive abilities are stable across the 
lifespan (1) and have relatively high heritability (2). They are key 

indicators of educational achievements (3), career successes (4), 
well-being (5), socioeconomic stability (6), and health outcomes 
(7). Recent studies have also demonstrated a widespread 
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relationship between impairments in cognitive abilities and vari
ous psychopathological disorders (8, 9). Accordingly, relating indi
vidual differences in cognitive abilities to neuroimaging data has 
been a primary goal for cognitive neuroscientists, from both basic 
and applied science perspectives (10). This approach allows neu
roscientists to scientifically quantify the presence of information 
related to cognitive abilities from each neuroimaging type or mo
dality. It also paves the way for identifying neural indicators of 
cognitive abilities, which could be useful for understanding the 
etiology of neuro- and psychopathology (11). Indeed, a leading 
transdiagnostic framework for psychiatry, the Research Domain 
Criteria (RDoC), treats cognitive abilities as one of the main func
tional domains for psychopathology across diagnoses. Having a 
robust neural indicator of cognitive abilities, in addition to behav
ioral and genetic indicators, is central to the RDoC framework (12).

The availability of large-scale neuroimaging databases (13) and 
the accessibility of predictive modeling methodologies (11, 14) 
have provided encouraging avenues to pursue a neural indicator 
of cognitive abilities. Accordingly, several researchers have built 
prediction models to predict cognitive abilities from brain MRI sig
nals and evaluated the models’ performance on separate, unseen 
data in the so-called brain-wide association studies (BWASs) 
(11, 15). BWASs can be conducted using either univariate (also 
known as mass-univariate) or multivariate (also known as machine 
learning) methods to draw MRI information. While univariate 
methods draw data from one region/voxel at a time, multivariate 
methods draw MRI information across regions/voxels (11, 16, 17). 
These multivariate methods, from particular MRI modalities, ap
pear to boost predictability for cognitive abilities (11, 16–18). For ex
amples, Marek et al. (16) conducted BWAS on several large datasets 
and concluded that “More robust BWAS effects were detected for 
functional MRI (fMRI) (vs. structural), cognitive tests (vs. mental 
health questionnaires), and multivariate methods (vs. univariate).”

Akin to genome-wide association studies in genetics (19) that 
can integrate information across single nucleotide polymor
phisms (SNPs) across the genome to create a predicted, propensity 
score for a phenotype of interest (e.g. cognitive abilities), known as 
polygenic scores, BWAS can also be used to create a similar pre
dicted score for each individual based on his/her neuroimaging 
data. For instance, Marek et al. (16) used trained multivariate 
methods to predict cognitive abilities from brain MRI data using 
part of the data (known as training set) and applied the trained 
model to the unseen participants (known as test set). 
Participants in the test set then had a predicted score of their cog
nitive abilities, based on their brain MRI data. Yet, BWAS for cog
nitive abilities has faced several challenges, including but not 
limited to predictability, test–retest reliability, and generalizabil
ity, as detailed below (16, 20, 21). These challenges have led to 
headlines, such as “Cognitive Neuroscience at the Crossroads” 
(22) and “Scanning the Brain to Predict Behavior, a Daunting 
“Task” for MRI” (23). To address these issues, we (24, 25) have re
cently proposed a potential solution, “stacking” (26), which allows 
us to combine different modalities of MRI into one prediction 
model. In this study, we aim to formally benchmark the benefits 
of stacking in improving predictability, test–retest reliability, 
and generalizability, using three large-scale neuroimaging data
bases (27–29).

First, predictability, or out-of-sample prediction, pertains to 
the ability of prediction models to predict a target variable, e.g. 
cognitive abilities, based on features, e.g. fMRI data, of unseen 
participants, not part of the model-building processes (30). More 
specifically, we refer to an application of a validation within one 
dataset. Here, researchers usually take a relatively large dataset, 

split it into training and test sets, then build a model from the 
training set, and apply the model to the test set. In addition to 
doing one split, researchers could also apply a cross-validation 
(CV) strategy by splitting a dataset into different nonoverlapping 
training–test folds and looping through folds to calculate the aver
age performance across the test sets (31, 32). Several earlier stud
ies (33–35) did not apply any validation when predicting cognitive 
abilities from MRI, possibly causing inflated predictability (16). 
With proper data splitting, a recent meta-analysis (15) estimated 
the predictability of multivariate methods on brain MRI of differ
ent modalities with a validation for cognitive abilities to be a 
Pearson’s correlation (r) of 0.42 on average.

While this level of predictability is encouraging, there is still 
room for improvement. Given that different MRI modalities may 
convey different information about the brain, drawing informa
tion across different MRI modalities could allow us to improve 
predictability further. Stacking enables researchers to draw infor
mation across MRI modalities, which seems to improve predict
ability over relying on any single MRI modality (24–26, 36, 37). In 
this framework (see Fig. 1), researchers first build “nonstacked” 
prediction models separately for each MRI set of features (e.g. cor
tical thickness or cortical area) and computed predicted values 
from each of these “nonstacked” models. They then treat these 
predicted values as features for “stacked” prediction models, al
lowing them to draw information across different MRI sets of fea
tures. Still, most studies use one single type of MRI to build 
prediction models. The popular choices include resting-state 
fMRI functional connectivity (FC) (Rest FC, or correlations in 
blood-oxygen-level-dependent [BOLD] time series across areas 
during rest) (38–40), task-fMRI FC (Task FC, or correlations in 
BOLD time series across brain regions during each task) (41–48), 
and structural MRI (including measures such as thickness, area 
and volume in cortical/subcortical areas) (49). While it is less com
mon to use task-fMRI contrasts (Task Contrasts, or fMRI BOLD ac
tivity relevant to events in each task) to predict cognitive abilities, 
studies have started to show the superior predictability of con
trasts from certain tasks, compared with other MRI modalities 
(24, 25, 39, 50). Nonetheless, previous attempts at stacking often 
ignored task contrasts (36, 37), and as a result, while improving 
over nonstacked models, they have not led to satisfactory predict
ive performance. We (24, 25) have started to show a boost in pre
dictability when applying stacking to combine task contrasts with 
other MRI modalities. Here, to ensure the robustness of this ap
proach, we examined the benefits of stacking task contrasts, along 
with other MRI modalities, on multiple large-scale datasets.

Second, test–retest reliability pertains to the rank stability of 
measurements across different time points, assuming the ab
sence of significant changes between assessments (e.g. treatment 
exposure, injury, and/or disease progression) (48–52). For in
stance, if some people score higher than their peers at time one, 
they should also score higher than their peers at time two. To 
use prediction models as an indicator for individual differences 
in cognitive abilities, the predicted values should be reliable 
across time. A recent study challenged the test–retest reliability 
of task contrasts (20). Here, the researchers examined test–retest 
reliability of Task Contrasts in certain areas, known to be strongly 
elicited in each task, across two time points and found a poor level 
of test–retest reliability across different tasks and two datasets: 
the Human Connectome Project: Young Adults (HCP Young 
Adults) (29) and the Dunedin Multidisciplinary Health and 
Development Study (Dunedin Study) (28). This poor level of test– 
retest reliability from Task Contrasts is concerning, especially 
when compared with the higher levels of test–retest reliability 
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found from structural MRI, Rest FC, and Task FC (20, 53, 54). In 
fact, structural MRI provided reliability that was almost at the ceil
ing (20). Yet, these studies simply took task contrasts from certain 

areas; they did not create prediction models or use multivariate 
methods and stacking to draw information across the whole brain 
and across different tasks/MRI modalities. It is possible that Task 

Fig. 1. Overview of study methodology. We used three datasets: HCP Young Adults, HCP Aging, and Dunedin Multidisciplinary Health and Development 
Study (Dunedin Study). a) Machine Learning Pipeline. Here, we depict the process we used for building prediction models for testing predictability within 
each dataset. Briefly, we used nested cross-validation (CV) by splitting the data into outer folds with around 100 participants in each. In each outer-fold 
CV loop, we then treated one of the outer folds as an outer-fold test set and treated the rest as an outer-fold training set. We then divided each outer-fold 
training set into five inner folds and applied inner-fold CV to build prediction models in three steps. In the first step (known as a nonstacking layer), one of 
the inner folds was treated as an inner-fold validation set, and the rest was treated as an inner-fold training set in each inner-fold CV. We used grid search 
to tune prediction models for each set of features. In the second step (known as a stacking layer), we treated different combinations of the predicted 
values from separate sets of features as features to predict the cognitive abilities in separate “stacked” models. In the third step, we applied the already 
tuned models from the first and second steps to the outer-fold test set. b) Predictability. Here, we examined the predictive performance across outer-fold 
test sets within each dataset. c) Test–retest reliability. Here, we used HCP Young Adults and Dunedin Study and treated participants who were scanned 
twice across MRI sessions as the test set and the rest as the training set. We then examined the ICC of the predicted values in the test set between the first 
and second MRI sessions. d) Generalizability. Here, we examined the predictive performance of the models built from a different dataset. We treated one 
of the three datasets as a training set and the other two as two separate test sets. e) Age distribution. Here, we show the age of participants at the time of 
scanning in each dataset.
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Contrasts could be more reliable once the models consider informa
tion across the whole brain, across different tasks, and across differ
ent MRI modalities. Following this conjecture, we (25) recently 
showed that multivariate methods and stacking substantively 
boosted reliability, reaching a much higher level of reliability in 
HCP Young Adults (29). To ensure the robustness of our findings, 
we need to test the benefits of this stacking approach in another, in
dependent dataset: the Dunedin Study (28), for example.

Third, generalizability, or more specifically cross-cohort gener
alizability, pertains to the ability of prediction models built from 
one dataset to predict the cognitive abilities of participants of an
other dataset (21). Different datasets, for instance, use different 
MRI scanners, recruit participants from different cultures and 
age groups, or implement different cognitive ability measure
ments. Thus, while predictability within one dataset provides 
the performance of prediction models within specific, harmonized 
contexts of one dataset, generalizability across datasets allows us 
to gauge the performance of prediction models in broader con
texts. This means that generalizability situates closer to how de
ployable the prediction models are in indicating cognitive 
abilities in the real world (21). Yet, only a few studies have inves
tigated the generalizability of MRI prediction models for cognitive 
abilities, and most have focused on FC during rest and/or tasks 
(55–57). The generalizability of stacked models is currently 
unknown.

Our overarching goal is to benchmark the impact of stacking on 
predictability, test–retest reliability, and generalizability of MRI 
prediction models for cognitive abilities. To achieve this, we 
used three large-scale neuroimaging databases, including HCP 
Young Adults (29), Human Connectome Project—Aging (HCP 
Aging) (27), and Dunedin Study (28). The databases vary in various 
aspects, such as participants’ age (see Fig. 1) and cultures, physic
al scanners, scanning parameters, and cognitive ability assess
ments. Note that, unlike our previous implementation of 
stacking (25), we also included Task FC in addition to Task 
Contrasts to capture wider information during task scanning. 
Specifically, here we built stacked models from eight different 
combinations of functional and structural MRI sets of features: 
“Task Contrast” including Task Contrasts from all of the tasks, 
“Task FC” including Task FC from all of the tasks, “Non Task” in
cluding Rest FC and structural MRI, “Task Contrast & FC” includ
ing task contrasts and task FC from all of the tasks, “All” including 
all sets of features, “All excluding Task Contrast” including every 
set of features except Task Contrasts, “All, excluding Task FC” in
cluding every set of features except Task FC, and “Resting and 
Task FC” including FC during rest and tasks.

For predictability (see Fig. 1), we applied nested CV within each 
dataset to evaluate the predictability of stacked models from 
multimodal MRI. To build the stacked models, we applied 16 com
binations of multivariate predictive modeling algorithms (includ
ing Elastic Net (58), Support Vector Regression (SVR) (59), Random 
Forest (60), and XGBoost (61)). Moreover, the nature of the 
Dunedin Study’s longitudinal measurements (28) allowed a 
unique opportunity for us to predict cognitive abilities from MRI 
data at the time of scanning (at the age of 45 years), but also at 
much earlier times (at the age of 7, 9, and 11 years), as well as to 
predict the residual scores that reflect relative changes in cogni
tive abilities during 36 years, compared with participants’ peers 
(62). For test–retest reliability (see Fig. 1), we examined the rank 
stability of stacked models from participants who were scanned 
twice in HCP Young Adults and Dunedin Study. Lastly, for gener
alizability (see Fig. 1), we built stacked models from one dataset 
and evaluated their performance on the other two. Due to the 

different tasks used in different datasets, we unfortunately could 
only examine the generalizability of the “Stacked: Non Task” mod
el, which combined all MRI modalities that did not involve tasks.

Results
Predictability
We showed performance indices of stacked and nonstacked mod
els for each predictive modeling algorithm and dataset in Figs. 2
and S1–S9 and their bootstrapped 95% CI in Figs. S10–S18. 
Overall, when predicting cognitive abilities at the time of scan
ning, the prediction models from multimodal MRI across different 
predictive modeling algorithms varied in their performance, re
flected by Pearson’s correlation (r) between predicted and ob
served values, ranging from around 0 to 0.6, across the three 
datasets. Notably, combining different sets of MRI features into 
stacked models constantly led to higher predictive performance. 
“Stacked: All,” which included all sets of MRI features, gave rise 
to top-performing models across algorithms and the three data
sets. Additionally, using Elastic Net across both nonstacking and 
stacking layers regularly resulted in prediction models that were 
either equally good or better than other prediction models based 
on other algorithms (see the bootstrapped differences in Figs. 
S19–S28). For instance, using Elastic Net across both layers for 
“Stacked: All” led to r at mean (M ) = 0.60 (95% CI [0.56, 0.64]), 
M = 0.61 (95% CI [0.56, 0.66]), and M = 0.55 (95% CI [0.49, 0.60]) for 
HCP Young Adults, HCP Aging, and Dunedin Study, respectively.

Among the nonstacked models that predicted cognitive abil
ities at the time of scanning, we found varied predictive perform
ance associated with different sets of MRI features. On the one 
hand, Task Contrasts from certain tasks led to top-performing 
models across the three datasets: the working-memory task in 
HCP Young Adults and the facename task in HCP Aging and 
Dunedin Study. With Elastic Net, these three task contrasts led 
to r at M = 0.5 (95% CI [0.45, 0.59]) for HCP Young Adults, M =  
0.46 (95% CI [0.39, 0.51]) for HCP Aging, and M = 0.43 (95% CI 
[0.37, 0.49]) for Dunedin Study. On the other hand, Task 
Contrasts from some other tasks led to poor-performing models, 
such as the gambling task in HCP Young Adults (r could not be cal
culated due to the models resulting in the same predicted values 
on certain folds), the Conditioned Approach Response Inhibition 
Task (CARIT) task in HCP Aging, r at M = 0.07 (95% CI [−0.02, 
0.15]), and the monetary incentive delay (MID) task in Dunedin 
Study, r at M = 0.16 (95% CI [0.08, 0.22]).

For Dunedin Study, the prediction models that predicted cogni
tive abilities at the time of scanning (i.e. when participants were 
45 years old) performed similarly to those that predicted cognitive 
abilities, collected much earlier than the scanning time (i.e. when 
they were 7, 9, and 11 years old). For instance, the “Stacked: All” 
models using Elastic Net across both nonstacking and stacking 
layers predicted cognitive abilities at 45 years old and at 7, 9, 
and 11 years old with r at M = 0.55 (95% CI [0.49, 0.60]) and M =  
0.52 (95% CI [0.47, 0.57]), respectively. And Task Contrasts from 
the facename task led to top-performing models across two 
time points: with r at M = 0.43 (95% CI [0.36, 0.48]) at 7, 9, and 11 
years old, compared with M = 0.43 (95% CI [0.37, 0.49]) at 45 years 
old.

In contrast, the performance of models predicting the residual 
scores for cognitive abilities from multimodal MRI was much poor
er. Note that the negative residual scores reflect a stronger decline 
in cognitive abilities, as expected from childhood cognitive abilities, 
compared with participants’ peers. The highest performing model 
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Fig. 2. Predictability of stacked and nonstacked models. a) Pearson’s correlation (r) of stacked and nonstacked models for each dataset with Elastic Net 
across the two layers. Higher is better. Each dot represents predictive performance at each outer-fold test set. For other algorithms and other 
performance indices, the coefficient of determination (R2), and MAE, see Figs. S1–S9. For Dunedin Study, childhood scores reflect cognitive abilities, 
averaged across 7, 9, and 11 years old, and negative residual scores reflect a stronger decline in cognitive abilities, as expected from childhood cognitive 
abilities, compared with participants’ peers. b) Dense scatter plot illustrating observed and predicted cognitive abilities (Z scores) using Stacked-All 
models with Elastic Net across two layers. Stacked All include all sets of MRI features. c) Observed cognitive abilities at ages 7, 9, and 11 years compared 
with age 45 years from the Dunedin Study. The ICC reflects the strength of the relationship in the observed cognitive ability scores between these time 
points. d) Predicted cognitive abilities at ages 7, 9, and 11 years compared with age 45 years from the Dunedin Study. Pearson’s correlation reflects the 
strength of the relationship in the predicted cognitive ability scores between these time points. The predicted cognitive ability scores at each of the two 
time points were trained from the same set of neuroimaging features via the Stacked-All models, albeit with different targets (either the cognitive abilities 
averaged across ages 7, 9, and 11 years or cognitive abilities at age 45 years). This is because MRI data were only collected at age 45 years, while cognitive 
abilities were collected at both time points. Accordingly, it is expected that the ICC of the observed cognitive ability scores will be higher than the 
Pearson’s correlation of the predicted cognitive ability scores. XGB, XGBoost.
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predicting the residual scores across algorithms was the model 
with the encoding vs. distractor contrast from the facename task, 
followed by various stacked models. With Elastic Net, the best 
model that predicted the residual scores led to r at M = 0.21 (95% 
CI [0.14, 0.27]). And with Elastic Net across both layers for 
“Stacked: All” led to r at M = 0.17 (95% CI [0.10, 0.24]). While these 
r levels were statistically better than chance according to boot
strapping (see Fig. S10), it was much lower than those from predic
tion models that predicted cognitive abilities at the time of 
scanning or much younger age.

To understand the contribution of each MRI feature, we exam
ined feature importance of each model based on Elastic Net coef
ficients. Given that Elastic Net features are linear and additive, the 
linear combination of Elastic Net coefficients reflects how the al
gorithm makes prediction. For stacked models, Fig. S29 shows 
the feature importance of stacked models for each dataset when 
predicting cognitive abilities at the time of scanning. The top- 
performing Task Contrasts contributed stronger in the stacked 
models across the three datasets. For nonstacked models, S30
and S31 show the feature importance of for each MRI modality, 
study, and target variable. Figure 3 and Tables S1–S10 show the 
feature importance of the top-performing, nonstacked models 
for each study and target variable.

Note that we provided tables of the numerical values of the pre
dictability indices on our GitHub page: https://github.com/HAM- 
lab-Otago-University/Predictability-Reliability-Generalizability/ 
tree/main/4_Supplementary.

Test–retest reliability
Figure 4 shows the test–retest reliability. Here, we tested the rank 
stability of predicted values from prediction models across two 
sessions, as indicated by interclass correlation (ICC). Given the 
availability of the test–retest participants, we examined the 
test–retest reliability of the stacked and nonstacked models 
from HCP Young Adults and Dunedin Study. We provided pre
dicted values across two scanning sessions for each participant 
in Figs. S33 and S34 and ICC for each MRI feature before prediction 
modeling in Figs. S35–S38. Overall, for both datasets, prediction 
models with structural MRI, including total brain and subcortical 
volume, surface area, and cortical thickness, led to the highest 
level of test–retest reliability.

Similar to predictability, combining different sets of MRI fea
tures into stacked models mostly gave rise to high test–retest reli
ability. “Stacked: All,” which included all sets of MRI features, 
resulted in an excellent ICC at 0.79 and 0.89 for HCP Young 
Adults and Dunedin Study, respectively. Moreover, we also found 
the boosting effect of stacking even when only fMRI during tasks 
was included in the models. For instance, “Stacked: Task 
Contrast and Task FC,” which included the contrasts and FC 
from all of the fMRI tasks within each dataset, led to an excellent 
ICC at 0.8 and 0.87 for HCP Young Adults and Dunedin Study, re
spectively. Similarly, “Stacked: Task Contrast,” which included 
the contrasts, but not FC, from all of the fMRI tasks within each 
dataset, still led to an excellent ICC at 0.77 and 0.77 for HCP 
Young Adults and Dunedin Study, respectively.

Among the nonstacked models that predicted cognitive abil
ities from fMRI (including Task Contrasts, Task FC, and Rest FC), 
some models showed a good-to-excellent level of ICC. These in
clude a contrast from the language task (ICC = 0.77) and FC during 
rest (ICC = 0.77) in HCP Young Adults and FC during the MID task 
(ICC = 0.72) and rest (ICC = 0.63) in Dunedin Study. Yet, some mod
els from fMRI provided a poor level of ICC, including a contrast 

during the motor task (ICC = 0.38) in HCP Young Adults and FC 
and a contrast during the MID (ICC = 0.35) and Stroop (ICC =  
0.28) tasks and FC (ICC = 0.24) during the emotion processing 
and facename tasks in Dunedin Study.

Generalizability
Figure 5 shows the generalizability among the three datasets. 
Here, we tested the performance of the prediction models trained 
from one dataset in predicting the cognitive abilities of partici
pants from another separate dataset, as indicated by Pearson’s 
correlation (r) between predicted and observed cognitive abilities. 
Given the different fMRI tasks used in different datasets, we only 
examined the generalizability of the prediction models using non
task sets of features (including rest FC, cortical thickness, cortical 
surface area, subcortical volume, total brain volume, and their 
combination, or “Stacked: Non Task”). Note that even the fMRI 
tasks with the same name, “the facename task” and “face or emo
tion processing” tasks were implemented differently across differ
ent datasets (see Materials and methods).

The “Stacked: Non Task” model showed generalizability at M =  
0.25 (SD = 0.06). This level of cross-dataset generalizability was 
significantly better than chance (see the 95% CI in Fig. 5) and 
was similar to, albeit numerically smaller than, the within- 
dataset predictability of the models built from nested CV (M =  
0.4, SD = 0.05). There were some differences in generalizability 
among pairs of studies. Generalizability was numerically higher 
between HCP Young Adults and HCP Aging (M = 0.33, SD = 0.04), 
as compared to between Dunedin Study and the other two data
sets (M = 0.22, SD = 0.03).

Similarly, the nonstacked models with nontask sets of features 
showed generalizability at M = 0.18 (SD = 0.05). Apart from cortical 
thickness, the generalizability of every other nontask set of fea
tures was significantly better than chance (see the 95% CI in 
Fig. 5). Additionally, this level of cross-dataset generalizability 
from the nontask sets of features was similar to the within- 
dataset predictability of the models built from nested CV (M =  
0.25, SD = 0.05).

We also examined the similarity in predicted values among the 
three datasets. Here, we tested the Pearson’s correlation (r) in pre
dicted values between the prediction models built from the same 
dataset and those built from another dataset (Fig. 5). The “Stacked: 
Non Task” model showed similarity in predicted values at M = 0.38 
(SD = 0.12). This level of similarity was significantly better than 
chance (see the 95% CI in Fig. 5). As for the nonstacked models 
with nontask sets of features, we found the similarity in predicted 
values on average at M = 0.57 (SD = 0.11) and all of them were sig
nificantly better than chance (see the 95% CI in Fig. 5). Yet, some 
nontask sets of features appeared to be stronger in similarity 
than others. For instance, the similarity in predicted values for 
the total brain volume (M = 0.92, SD = 0.04) and subcortical vol
ume (M = 0.84, SD = 0.09) was numerically higher than those for 
rest FC (M = 0.29, SD = 0.10), cortical area (M = 0.55, SD = 0.09), 
and cortical thickness (M = 0.26, SD = 0.22).

Discussion
Here, we examined stacking as a potential solution for improving 
BWAS for cognitive abilities in three key aspects: predictability, 
test–retest reliability, and generalizability (16, 20, 21). Most 
BWASs use one single modality of MRI to build prediction models, 
but here, we drew information across different MRI modalities via 
stacking (26). Stacked models demonstrated improvement in all 
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three aspects and performed better than any individual modality 
in isolation. For predictability, stacked models led to high predict
ability, relative to what has been reported in the literature, across 
the three datasets when predicting cognitive abilities at the time 

of scanning. Notably, using the Dunedin Study, we were able to 
predict participants’ cognitive abilities at ages 7, 9, and 11 years 
using their multimodal MRI at age 45 years, relatively well (r =  
0.52). We found that this predictive performance was driven by 

Fig. 3. Feature importance of the top-performing nonstacked models with Elastic Net, as indicated by Elastic Net coefficients. We grouped brain ROIs 
from the Glasser atlas (67) into 13 networks based on the Cole-Anticevic brain networks (66). In each figure, the networks are ranked by the mean Elastic 
Net coefficients, with the rankings shown to the right of each figure. The network partition illustration is sourced from the Actflow Toolbox https:// 
colelab.github.io/ActflowToolbox/. We provide actual values of the feature importance in Tables S1–S10.
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task contrasts, followed by task connectivity, across the three da
tasets. For test–retest reliability, stacked models reached an excel
lent level of reliability across HCP Young Adults and Dunedin 
Study, even when we only included fMRI during tasks in the mod
els. For generalizability, combining nontask MRI features into a 
stacked model led to models that were applicable to other data
sets, giving a level of performance that is better than chance. 
Altogether, the results optimistically support stacking as a viable 
approach to address the three challenges of BWAS for cognitive 
abilities.

Stacking improved predictability
Combining MRI across different sets of features via stacking con
sistently and substantially improved predictability within each 
dataset. Indeed, we found this improved predictability across 
three large-scale datasets that varied in age, culture, scanner 
manufacturer, scanning parameters, and cognitive ability assess
ments (27–29). This is consistent with our previous findings 
(24, 25). For cognitive abilities at the time of scanning, stacked 
models with all MRI sets of features led to r up to around 0.6, high
er than those of nonstacked models in the current study, as well 

as those reported in a recent meta-analysis (r = 0.42 with 95% CI 
[0.35, 0.50]) (15). As reviewed in the meta-analysis (15), most stud
ies applied similar machine learning algorithms to those used 
here but relied on a single MRI modality, most commonly FC dur
ing rest or task, followed by structural MRI. The use of task-fMRI 
contrasts is less common (39). Our nonstacked models with task 
FC, rest FC, and structural MRI (sMRI) showed similar perform
ance to previous findings. Importantly, our stacked models that 
included Task Contrasts along with other modalities showed a 
much higher predictive performance (e.g. r = 0.604, R2 = 0.352 
based on “Stacked: All” with Elastic Net across both layers done 
on the HCP Young Adults), compared with the stacked models 
that did not include task fMRI in the current study as well as to 
the models in a previous study that also modeled the data from 
HCP Young Adults (R2 = 0.078) (37). This confirms (i) that different 
MRI sets of features provide independent but complementary in
formation about individual differences in cognitive abilities and 
(ii) that Task Contrasts, which are often ignored, could significant
ly help improve the predictive performance.

The superior predictability of Task Contrasts from certain 
tasks, especially when predicting cognitive abilities at the time 
of scanning, was also consistent with previous work (24, 25, 39, 

Fig. 4. Test–retest reliability of the predicted values of the stacked and nonstacked models, indicated by ICC for HCP Young Adults and Dunedin Study. 
Left panel: Each dot represents ICC, while each bar represents a 95% CI. Right panel: Predicted values of some stacked models across two scanning 
sessions. Each line represents each participant. Lines would be completely parallel with each other in the case of perfect test–retest reliability. For other 
stacked and nonstacked models, see Figs. S33 and S34.

8 | PNAS Nexus, 2025, Vol. 4, No. 6

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/article/4/6/pgaf175/8161366 by guest on 24 June 2025

http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgaf175#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgaf175#supplementary-data


50). The working-memory task in HCP Young Adults and the face
name task in HCP Aging and Dunedin Study created nonstacked 
models with the highest predictability for each dataset. The 
more popular MRI modalities, Task FC and Rest FC (15), did not 
perform as strongly as the Task Contrasts from working-memory 
and facename tasks. And structural MRI seemed to provide much 
poorer predictability across datasets, consistent with earlier work 
(49). It is important to note that not all Task Contrasts produced 
prediction models with high predictability. In fact, the worst pre
diction models across the three studies were also Task Contrasts 
(e.g. the gambling, CARIT and MID tasks in HCP Young Adults, 
HCP Aging, and Dunedin Study, respectively). This suggests the 
selectivity of the fMRI BOLD activity relevant to events for differ
ent tasks—some tasks were related to individual differences in 
cognitive abilities and some tasks were not. The best tasks here 
were related to either working memory or episodic memory, 
which might reflect what was being measured with the cognitive 
ability assessments (17, 63), i.e. through NIH Toolbox (64) or 
Wechsler Adult Intelligence Scale (WAIS) (65). Accordingly, to fur
ther improve the predictability of BWAS for cognitive abilities via 
task contrasts, future research will need to determine which tasks 
are more relevant to cognitive abilities. If the tasks used have not 
yet been established to predict cognitive abilities, researchers may 

still consider stacking to determine whether combining Task 
Contrasts from such tasks with other MRI modalities improves 
predictability. By using multivariate predictive modeling algo
rithms, such as Elastic Net, to stack different Task Contrasts, 
tasks that do not enhance predictability will have less weight in 
the final stacked model due to regularization. This makes it safe 
to include any available tasks. Researchers may then decide to 
drop the less contributing tasks to create a more parsimonious 
model.

We also examined the predictability of stacked models in light 
of the Dunedin Study’s longitudinal measurements for cognitive 
abilities (28). Stacked models with all MRI sets of features were 
able to predict cognitive abilities, collected 36 years before the 
scanning time, at a similarly high level of performance to those 
at the time of scanning (r = 0.55 vs. r = 0.52, respectively). Yet, 
when predicting the residual scores, the stacked models with all 
MRI sets of features gave much lower predictability, albeit still 
significant, at r = 0.17. These residual scores reflect changes in 
cognitive abilities from childhood to middle age, compared with 
participants’ peers. This pattern of results may suggest that brain 
information revealed by multimodal MRI, obtained in the middle 
age (i.e. 45 years old), is more related to the stable trait of cognitive 
abilities, but less to the changes over 35 years. Perhaps, this is 

Fig. 5. Generalizability and similarity in predicted values among the three datasets, as indicated by Pearson’s correlation, r. Note that due to the different 
tasks used in different datasets, we only examined the generalizability of prediction models built from nontask sets of features (including rest FC, cortical 
thickness, cortical surface area, subcortical volume, total brain volume, and their combination, or “Stacked: Non Task”). For generalizability, the 
off-diagonal values reflect the level of generalizability from one dataset to another, while the diagonal values reflect the predictability of the models built 
from the same dataset via nested CV. For the similarity in predicted values, the off-diagonal values reflect the level of similarity in predicted values 
between two datasets. Higher values are better. The values in square blankets reflect a bootstrapped 95% CI. If 95% CI did not include 0, then 
generalizability/similarity in predictive values was better than chance. HCP-YA, HCP Young Adults; HCP-A, HCP Aging; DUD, Dunedin Study.
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because individual differences in cognitive abilities were stable 
over the lifespan (1), making it easier for multimodal MRI to cap
ture their intervariability over intraindividual variability. Using 
the Dunedin Study, we indeed found a high rank stability of this 
trait: that childhood cognitive abilities were related to middle- 
aged cognitive abilities at ICC = 0.78 and that the multimodal 
MRI predicted values of cognitive abilities based on either time 
points led to very similar scores at r = 0.94 (see Fig. 2c and d). 
Accordingly, if the aim of BWAS is to capture the stable trait of 
cognitive abilities, the current approach of stacking multimodal 
MRI data from one time point seems appropriate. It is important 
to note that our work only demonstrates the retrospective predic
tion of cognitive abilities (i.e. using MRI at age 45 years to predict 
cognitive abilities 36 years prior). Future work is needed to exam
ine whether our method can be extended to forecast cognitive 
abilities. Fortunately, the Dunedin Study is still ongoing, and we 
hope to test whether our method can use MRI at age 45 years to 
predict future cognitive decline as well as cognitive-related neuro
logical disorders, such as mild cognitive impairments, dementia, 
and Alzheimer’s, as the participants age.

To explain how each model made predictions, we treated Elastic 
Net coefficients as indicators of feature importance. Examining the 
feature importance in the stacked models revealed that the top- 
performing modality, specifically the best Task Contrasts, was the 
strongest contributor. This pattern was consistent across datasets. 
This suggests that the top-performing Task Contrasts, such as the 
working-memory task (reflected by high over lower working- 
memory load conditions) in HCP Young Adults and the facename 
task (reflected by encoding over distractor/control conditions) 
in HCP Aging and the Dunedin Study, provided strong and unique 
contributions to the overall prediction of the stacked models. 
Examining the feature importance of these top-performing Task 
Contrasts illustrates the contribution from each brain area.

We grouped brain areas into 13 different networks based on 
the Cole-Anticevic definition (66). Contributions from different 
brain networks varied depending on the specific Task Contrasts, da
tasets, and cognitive target variables. Nonetheless, some patterns 
emerged. For instance, our prediction models indicated that partic
ipants with more positive Task Contrasts from brain areas within 
the default mode network tended to have worse cognitive abilities. 
Conversely, participants with more positive Task Contrasts from 
brain regions within the dorsal attention network tended to have 
better cognitive abilities at the time of scanning, cognitive abilities 
35 years prior, and residual scores. Accordingly, we demonstrated 
the contribution of certain networks within the context of specific 
tasks in predicting cognitive abilities.

Stacking improved test–retest reliability
Creating prediction models from separate MRI sets of features and 
combining them via stacking also improved reliability for Dunedin 
Study (28), especially for Task Contrasts, similar to our previous 
findings (25) with HCP Young Adults (29). This approach, in effect, 
addresses the poor reliability of Task Contrasts, found earlier in 
the same two datasets (20). That is, previous work (20) focused 
on the reliability of Task Contrasts at specific brain areas from cer
tain tasks and found low test–retest reliability (also demonstrated 
here in Figs. S35 and S36). Here, instead of focusing on specific 
areas, we used multivariate methods and stacking to draw infor
mation across the whole brain and tasks and found a boost in re
liability. Indeed, stacked models that combined only Task 
Contrasts and that combined Task Contrasts and FC together 

both gave the ICC at excellent levels (i.e. ICC ≥ 0.75) across the 
two datasets.

While the prediction models from structural MRI sets of fea
tures, e.g. surface area, total brain volume, subcortical volume, 
led to the highest level of test–retest reliability, these models pro
vided poorer predictability for cognitive abilities. This high level of 
test–retest reliability from structural MRI is not surprising since 
we should not expect drastic changes in brain anatomy in a short 
period of time, assuming no major brain incidents (e.g. concussion 
or stroke) (20). In contrast, the stacked models from Task 
Contrasts and FC also provided an excellent level of test–retest re
liability (albeit not as high as structural MRI models), but they 
gave much higher predictability. Accordingly, future BWAS for 
cognitive abilities that would like to optimize both reliability and 
predictability might prefer stacking Task Contrasts and FC, or bet
ter yet stacking all the MRI data available, rather than relying on 
structural MRI.

Stacking of non-task MRI sets of features led 
to better-than-chance generalizability
Unlike predictability and reliability, we could only focus on the 
nontask MRI sets of features (including rest FC, cortical thickness, 
cortical surface area, subcortical volume, and total brain volume) 
for cross-cohort generalizability, given the differences in fMRI 
tasks used in each dataset. We found that the “Stacked: Non 
Task” models, built from one dataset, predicted the cognitive abil
ities of the participants in the other two datasets better than 
chance. Still, if we treated the within-dataset predictability as 
the ceiling of cross-dataset generalizability, the cross-dataset gen
eralizability of the “Stacked: Non Task” models (r = 0.25) was nu
merically lower than the ceiling (r = 0.4).

One caveat is that the generalizability of the “Stacked: Non 
Task” models between HCP Young Adults and HCP Aging (r =  
0.33) is numerically higher than those between Dunedin Study 
and the two HCP datasets (r = 0.22). Consistent with this is the nu
merically higher similarity in predicted values between HCP 
Young Adults and HCP Aging (r = 0.51) compared with between 
Dunedin Study and the two HCP datasets (r = 0.32). This may re
flect a higher homogeneity between the two HCP datasets. While 
the two HCP datasets differed in the age of participants and cer
tain scanning parameters (e.g. repetition time [TR]), HCP Aging 
(27) was modeled after the earlier success of HCP Young Adults 
(29). The two HCP datasets, for instance, used the NIH Toolbox 
(64) to access cognitive abilities, while Dunedin Study (28) used 
WAIS (65). Nonetheless, testing generalizability on Dunedin 
Study that was conducted independently from the HCPs may pro
vide a more realistic picture of how deployable the “Stacked: Non 
Task” models to indicate cognitive abilities in the real world.

As for the nonstacked models, cross-cohort generalizability 
was mostly significant, except for cortical thickness. This is in 
line with previous studies focusing on cross-dataset generalizabil
ity of Rest FC (55–57). The generalizability of structural MRI sets of 
features was more varied. Some structural MRI sets gave general
izability close to predictability and provided high similarity in pre
dicted values: total brain volume (generalizability = 0.24, 
predictability = 0.23, and similarity = 0.92) and subcortical brain 
volume (generalizability = 0.21, predictability = 0.22, and similar
ity = 0.84). But other structural MRI sets did not: cortical areas 
(generalizability = 0.16, predictability = 0.27, and similarity =  
0.55) and cortical thickness (generalizability = 0.10, predictability  
= 0.23, and similarity = 0.26). It is hard to pinpoint whether this is 
due to the differences in scanning parameters between datasets 
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or, instead, due to the nature of the sets of features. Future re
search with a larger number of datasets is needed to pinpoint 
the characteristics of the datasets and/or features that could 
lead to better generalizability.

Limitations and future directions
The current study has several limitations. First, it would have 
been desirable to examine the generalizability of stacked models 
involving Task Contrasts and Task FC in all cohorts. Stacked mod
els involving Task Contrasts and FC scored high in both predict
ability (especially when compared with “Stacked: Non Task” 
models) and reliability. The inability to test their generalizability 
means that we cannot know for sure how deployable these highly 
predictable models are. Thus, for the time being, we advise re
searchers who would like to apply the stacked models with task 
fMRI on new data to follow the procedures of the original datasets 
as much as possible. This could be task design and scanning pa
rameters among others.

Second, we mainly relied on the fMRI tasks and preprocessing 
pipelines chosen by the original investigators of each dataset. 
However, the fMRI tasks they chose might not be optimized for 
predictability, reliability, and generalizability for cognitive abil
ities. As suggested elsewhere (52), perhaps fMRI tasks need to be 
designed from the ground up, using tools such as item response 
theory, to ensure that they capture individual differences well. 
Fortunately, some of the fMRI tasks (e.g. the working-memory 
and language tasks) provided relatively high predictability and re
liability for cognitive abilities. Based on our results, in a situation 
where optimization of the tasks is unknown, stacking Task 
Contrasts and Task FC across all of the available fMRI tasks should 
provide the best performance possible, given the choice of the 
tasks used. Similarly, each dataset’s preprocessing approach 
might not be optimized for BWAS with cognitive abilities as a tar
get. For instance, for Rest FC in HCP Young Adults, we treated a 
choice of the two denoising strategies as another hyperparameter 
to select from the training sets: the investigators’ recommended 
method ICA-FIX (67) and an alternative method aCompCor (68). 
We found that aCompCor (68) performed better in the training 
sets across different prediction algorithms (see Fig. S32), despite 
not being used in the original preprocessing pipeline (29, 69, 70). 
While using the recommended preprocessing pipeline for each 
dataset allowed for easier reproducibility, we still need to test 
whether predictability, reliability, and generalizability could be 
further improved with more refined pipelines, optimized for pre
dicting cognitive abilities.

Third, while predictability, reliability, and generalizability are im
portant for multimodal MRI to be applied as a neural indicator for 
cognitive abilities (21), other aspects still need to be accomplished 
for cognitive neuroscientists to truly understand the relationship be
tween cognitive abilities and multimodal MRI measures. For in
stance, to reveal how the prediction models draw information 
from each MRI set of features, we need prediction models with 
good explainability (17, 71). Yet, the current prediction models are 
optimized for predictability, but not explainability. We previously 
proposed several methods to improve the explainability of predic
tion models (17). For example, to provide statistical inference for fea
ture importance, future researchers could create a null distribution 
of feature importance via permutation, allowing them to determine 
whether the contribution of each feature is significantly better than 
chance, a technique called eNetXplorer (17, 72). Similarly, to demon
strate the pattern (i.e. linearity vs. nonlinearity) and directionality 
(i.e. positive vs. negative) of the relationship between each MRI 

feature and the prediction, future researchers could apply a visual
ization technique called Accumulated Local Effects (ALE) (17, 73). 
Lastly, for interactive algorithms (e.g. XGBoost and Random 
Forest), future researchers could use Friedman’s H-statistic (17, 74) 
to quantify the interaction strength between each MRI feature and 
all other MRI features in making the prediction. However, optimizing 
explainability is beyond the scope of this study.

Conclusion
Cognitive neuroscientists have long dreamt of the ability to asso
ciate individual differences in cognitive abilities with brain varia
tions (10). Yet, BWASs need to be improved in their predictability, 
test–retest reliability, and generalizability before they can pro
duce a robust neural indicator for cognitive abilities (16, 20, 21, 
75, 76). Based on our benchmark, combining different modalities 
of MRI into one prediction model via stacking seems to be a viable 
approach to realize this dream of cognitive neuroscientists.

Materials and methods
Datasets
In this study, we analyzed three datasets with 2,131 participants 
(1,139 females) in total (see Fig. 1 for their age distribution; see 
Supplementary Methods for participants’ details). These three da
tasets have been approved by the institutional review boards at 
the institutions where the data were collected, and informed con
sent was obtained (see references (27, 29, 77)). The current authors 
applied for and received authorization from the original investiga
tors to conduct secondary analyses on these datasets. As these da
tasets are deidentified and designated for public use, the ethics 
committee at University of Otago determined that this research 
does not constitute human subjects research, and therefore, eth
ical approval was not required.

Test–retest subsets
HCP Young Adults and Dunedin Study had a subset of participants 
who completed the entire MRI procedure twice. In HCP Young 
Adults, 45 participants were scanned M = 139 (SD = 67.3) days 
apart, and the exclusion criteria left 34 participants. In Dunedin 
Study, 20 participants were scanned M = 79 (SD = 10.4) days apart.

Features: multimodal MRI
We used the following MRI modalities: task-fMRI contrasts, 
task-fMRI FC, resting-state fMRI connectivity, and structural MRI.

Task-fMRI contrasts (task contrasts)
Task Contrasts reflect fMRI BOLD activity relevant to events in 
each task. We used Task Contrasts, preprocessed by each of the 
three studies. See Supplementary methods for the details about 
task-contrast features. Briefly, for each study, we extracted one 
set of 379 (i.e. region of interests [ROIs]) per contrast, leaving sev
en, five, and four sets of 379 task-contrast features for HCP Young 
Adults, HCP Aging, and Dunedin Study, respectively.

Task-fMRI FC
Task FC reflects FC during each task. Studies have considered task 
FC as an important source of individual differences (53, 78, 79). 
As opposed to creating contrasts from fMRI time series during 
each task as in Task Contrasts, here we computed FC, controlling 
for HRF-convolved events from each task. See Supplementary 
methods for the details about Task FC features. Briefly, for each 
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study, we extracted one set of 75 task FC features (principal com
ponents) per contrast, leaving seven, five, and four sets of 75 task 
FC features for HCP Young Adults, HCP Aging, and Dunedin Study, 
respectively.

Resting-state fMRI FC
Rest FC reflects FC during rest. Both HCP Young Adults and HCP 
Aging included four runs of rest FC, each at 14:33 min and 
6:42 min long, respectively. Dunedin Study included only one 
run of rest FC with 8:16 min long. See Supplementary methods
for the details about Rest FC features. Briefly, we obtained one 
set of 75 rest FC features (principal components) for each of the 
three datasets.

Structural MRI
Structural MRI reflects individual differences in brain anatomy. 
The three studies applied Freesurfer (80) to quantify these individ
ual differences. Here, we focused on four sets of features: cortical 
thickness, cortical surface area, subcortical volume, and total 
brain volume. Specifically, for cortical thickness and cortical sur
face area, we created 148 vertex-based ROIs using the Destrieux 
atlas (81), while for subcortical volume, we created 19 voxel-based 
ROIs using the ASEG atlas (80). For total brain volume, we used 
summary indices provided by Freesurfer(80). See Supplementary 
Methods for details.

Target: cognitive abilities
Cognitive abilities were measured outside of the MRI. HCP Young 
Adults and HCP Aging measured cognitive abilities using the NIH 
Toolbox (64). Here, we used a summary score (CogTotalComp_ 
Unadj) that covered behavioral performance from several tasks, in
cluding picture sequence memory, Flanker, list sorting, dimensional 
change card sort, pattern comparison, reading tests, and picture 
vocabulary.

Dunedin Study measured cognitive abilities in several visits. 
We computed three scores and used them as separate targets. 
The first score is cognitive abilities, collected as part of the MRI vis
it at 45 years old via the WAIS-IV scale (65). The second score is 
cognitive abilities, averaged across 7, 9, and 11 years old, collected 
using the Wechsler Intelligence Scale for Children—Revised (82). 
The third score is the residual scores for the cognitive abilities 
(62), calculated as follows. We, first, used linear regression to pre
dict cognitive abilities at 45 years old from cognitive abilities at 7, 
9, and 11 years old. We, then, subtracted the predicted values of 
this linear regression from the actual cognitive abilities at 45 years 
old, creating the residual cognitive abilities. Negative scores of 
these residual cognitive abilities reflect a stronger decline in cog
nitive abilities, as expected from childhood cognitive abilities, 
compared with participants’ peers. Note that, due to the differen
ces in the cognitive measures used for age 45 vs. ages 7, 9, and 11 
years, we could not simply subtract the scores between the two 
time points. While using the residual scores did not provide a 
change in cognitive abilities in absolute terms, they still indicate 
the relative changes in an individual’s cognitive abilities com
pared with their peers. See Prediction models below for our ap
proach to prevent data leakage when calculating this residual 
score.

Prediction models
Similar to our previous work(25), we employed nested CV to pre
dict cognitive abilities from multimodal MRI data (see Fig. 1). 
Initially, we divided the data from each study into outer folds. 

The number of outer folds was determined to ensure at least 
100 participants per fold. Consequently, we had eight outer folds 
for HCP Young Adults, five for HCP Aging, and seven for the 
Dunedin Study. For HCP Young Adults, which included partici
pants from the same families, we created the eight outer folds 
based on ∼50 family groups, ensuring that members of the same 
family were in the same outer fold.

We then iterated through the outer folds, treating one fold as 
the test set and the remaining folds as the training set. This ap
proach resulted in around 100 participants in each outer-fold 
test set for all three studies, with ∼700, 400, and 600 participants 
in the outer-fold training sets for HCP Young Adults, HCP Aging, 
and the Dunedin Study, respectively. Next, we split each outer- 
fold training set into five inner folds. We iterated through these in
ner folds to tune the hyperparameters of the prediction models, 
selecting the final models based on the coefficient of determin
ation (R²), a default option in sklearn. To prevent data leakage be
tween the outer-fold training and test sets when calculating 
residual scores for cognitive abilities in the Dunedin Study, we cre
ated linear regression models to predict cognitive abilities at age 
45 years from abilities at ages 7, 9, and 11 years using the outer- 
fold training set and applied these models to the corresponding 
outer-fold test set.

Apart from training each of the sets of multimodal MRI features 
to predict cognitive abilities in separate prediction models, known 
as “nonstacked” models, we also combined different sets together 
via stacking, creating “stacked” models (see Fig. 1). To train the 
stacked models, once we finished training all of the nonstacked 
models from every set of features, we computed predicted values 
from these nonstacked models. Specifically, we used only the data 
from each outer-fold training set to train the stacked models and 
treated the predicted values from the nonstacked models as fea
tures to predict cognitive abilities. For example, to create a 
stacked model to combine Task Contrasts for HCP Young 
Adults, we first created nonstacked models for each of the seven 
sets of 379 task-contrast features available in this dataset. 
Then, we computed the predicted values of each of these seven 
nonstacked models, using them as seven features in a stacked 
model that was trained to predict cognitive abilities in the outer- 
fold training sets. We tuned these stacked models using the 
same inner-fold CV as the nonstacked models. Accordingly, 
the training of stacked and nonstacked models did not involve 
outer-fold test sets, preventing data leakage. Note that by creat
ing just one predicted value per nonstacked model, our stacking 
approach is sometimes called “late fusion,” which differs from 
simply concatenating features from different sets, known as 
“early fusion” or “flat model” (25, 83). One benefit of stacking pre
dicted values over concatenating features is the ability to use 
different machine learning algorithms within and across sets 
of features.

We created eight stacked models: “Task Contrast” including 
Task Contrasts from all of the tasks, “Task FC” including Task 
FC from all of the tasks, “Non Task” including Rest FC and struc
tural MRI, “Task Contrast & FC” including task contrasts and 
task FC from all of the tasks, “All” including all sets of features, 
“All excluding Task Contrast” including every set of features ex
cept Task Contrasts, “All excluding Task FC” including every set 
of features except Task FC, and “Resting and Task FC” including 
FC during rest and tasks. Note that we used two strategies, 
ICA-FIX(67) and aCompCor(68), to denoise Rest FC for HCP 
Young Adults. We ultimately picked aCompCor (68) to be included 
in the stacked models since it led to a better predictive perform
ance in the outer-fold training sets (see Fig. S32).
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We applied corrections to reduce the influences of potential 
confounds. First, for all three studies, we controlled for biological 
sex by residualizing biological sex from all MRI features and cog
nitive abilities. For HCP Young Adults and HCP Aging, we also con
trolled for age, in addition to biological sex, from all MRI features 
and cognitive abilities. We did not control for age in Dunedin 
Study because all of the participants were scanned and measured 
their cognitive abilities at roughly the same age. Additionally, 
we residualized motion (average of relative displacement, 
Movement_RelativeRMS_mean) from task contrasts for HCP 
Young Adults and Dunedin Study. We did not residualize motion 
from task contrasts for HCP Aging as well as task FC and rest FC for 
all studies since either ICA-FIX (67) or aCompCor (68) was already 
applied to each participant. We also standardized all MRI features. 
To avoid data leakage, we first applied all residualization and 
standardization on each outer-fold training set. We then applied 
the parameters of these residualization and standardization to 
the corresponding outer-fold test set.

As in our previous article (25), we implemented four multivari
ate, predictive modeling algorithms via Scikit-learn (84): Elastic 
Net (58), SVR (59, 85), Random Forest (60), and XGBoost (61). For 
stacked models, we needed to apply the algorithm to two layers: 
(i) nonstacked layer (Step 1, Fig. 1), or on each set of features 
and (ii) stacked layer (Step 2, Fig. 1), or on the predicted values 
from each set. Accordingly, we implemented 16 (i.e. four-by-four 
across two layers) combinations of algorithms for the stacked 
models. See the details about predictive modeling algorithms in 
Supplementary Methods.

Predictability
To evaluate the predictability of prediction models, we computed 
the predicted values of the models at each outer-fold test set and 
compared them with the observed cognitive abilities. We calcu
lated three performance indices for predictability: Pearson’s cor
relation (r), the coefficient of determination (R2), and mean 
absolute error (MAE). Note for R2, we applied the sum of squares 
definition (i.e. R2 = 1 − [sum of squares residuals/total sum of 
squares]) and not the square of r, following a previous recommen
dation (31).

To quantify the uncertainty around these performance indices, 
we calculated bootstrapped 95% CI (86). Here, we combined pre
dicted and observed cognitive abilities across outer-fold test 
sets, sampled these values with replacement 5,000 times, and 
computed the three performance indices each time, giving us a 
bootstrapped distribution for each index. If the 95% CI of the r or 
R2 bootstrapped distribution was higher than 0, then the predict
ability from a particular prediction model was better than chance.

To compare predictability among prediction models, we also 
used the bootstrapping approach (86). Similar to the above, we 
sampled, with replacement for 5,000 times, the observed cognitive 
abilities along with their predicted values from different predic
tion models across outer-fold test sets. In each sample, we com
puted each performance index of each prediction model and 
subtracted this index from that of the prediction model with the 
highest predictability of each dataset. If the 95% CI of this distribu
tion of the subtractions was higher than 0, then we concluded that 
the prediction model we tested had significantly poorer perform
ance than the prediction model with the highest predictability. 
We applied this approach separately for nonstacked and stacked 
models, allowing us to evaluate the best nonstacked and stacked 
models for each dataset.

To understand how the prediction models drew information 
across multimodal MRI features, we plotted Elastic Net coeffi
cients. We chose Elastic Net coefficients because (i) Elastic 
Net led to high predictability, as high as or higher than other algo
rithms (see Results) and (ii) the Elastic Net coefficients are readily 
interpretable. Elastic Net creates a predicted value from a 
weighted sum of features, and therefore, a stronger magnitude 
of an Elastic Net coefficient means a higher contribution to the 
prediction.

Our use of nested CV led to separate Elastic Net models, one for 
each outer fold, making it hard to visualize Elastic Net coefficients 
across all participants in each dataset. To address this, we re
trained Elastic Net using the whole data (i.e. without splitting 
the data into outer folds) in each dataset and applied five CVs to 
tune the model. We then plotted the Elastic Net coefficients on 
brain images using brainspace (87) and nilearn (88). Note that 
we modeled Task FC and Rest FC after reducing their dimension 
via PCA. To extract the feature importance at each ROI-pair index, 
we multiplied the absolute PCA scores with Elastic Net coefficients 
and then summed the multiplied values across the 75 compo
nents, resulting in 71,631 ROI-pair indices.

Test–retest reliability
Given the high predictability of Elastic Net (see Figs. S19–S28), we 
evaluated the test–retest reliability of the prediction models based 
on Elastic Net. To evaluate test–retest reliability, we used HCP 
Young Adults and Dunedin Study test–retest subjects (i.e. partic
ipants who were scanned twice) as the test set and the rest of the 
participants in each dataset as a training set. Within the training 
set, we used the same five CVs to tune the Elastic Net models, as 
described above. We then examined the test–retest reliability of 
the predicted values between the first and second MRI sessions, 
as quantified by ICC 3.1 (89) via pingouin (https://pingouin-stats. 
org/):

MSp − MSe

MSp + (k − 1)MSe
, 

where MSp is mean square for participants, MSe is the mean 
square for error, and k is the number of time points. We used 
the following criteria to interpret ICC (90): ICC < 0.4 as poor, 
ICC ≥ 0.4 and < 0.6 as fair, ICC ≥ 0.6 and < 0.75 as good, and 
ICC ≥ 0.75 as excellent reliability.

Generalizability
Similar to test–retest reliability, we evaluated the generalizability 
of the prediction models based on Elastic Net given the high pre
dictability of Elastic Net based on bootstrapped comparisons 
(see Figs. S19–S28). For features, because the three datasets used 
mostly different fMRI tasks, we focused on the generalizability 
of nontask sets of features (including rest FC, cortical thickness, 
cortical surface area, subcortical volume, and total brain volume) 
and their stacked model, “Stacked: Non Task.” For the target, we 
standardized cognitive abilities using a Z-score within each data
set, so that the target for each dataset was at the same standar
dized scale before model fitting. This is because Dunedin Study 
used WAIS-IV for measuring cognitive abilities, while Human 
Connectome Projects—Young Adults (HCP Young Adults) and 
Human Connectome Projects—Aging (HCP Aging) used NIH tool
box (64). Note that, for Dunedin Study, we only focused on cogni
tive abilities collected during the MRI visit at age 45 years (as 
opposed to during earlier visits) as the target, given that the other 
two studies only provided cognitive abilities during the MRI visit.
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To evaluate generalizability across datasets, we treated one of 
the three datasets as a training set and the other two as two sep
arate test sets. We computed the predicted values of the models at 
each test dataset and compared them with the observed cognitive 
abilities using Pearson’s correlation (r). To examine whether the 
generalizability was statistically significant, we bootstrapped 
r 5,000 times. If the 95% bootstrapped CI was higher than 0, the 
r was statistically significantly better than chance. We also com
pared generalizability across datasets to predictability within 
each dataset using nested CVs. For predictability within each da
taset, we combined predicted values across outer test sets and 
compared them with the observed cognitive abilities. We consid
ered the predictability within each dataset as the ceiling of how 
high generalizability across datasets could be.

To further understand the extent to which the prediction mod
els built from one dataset are different from those built from an
other, we also examined the similarity between predictive values. 
Here, using Pearson’s correlation (r), we compared the correlation 
in predictive values from the prediction models built from the 
same dataset and those built from another dataset. Similar to gen
eralizability, to test whether the similarity between predictive val
ues was statistically significant, we bootstrapped r 5,000 times. If 
the 95% bootstrapped CI was higher than 0, the r was statistically 
significantly better than chance.
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