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Abstract 
Objectives:  Individuals with more education are at lower risk of developing multiple, different age-related diseases than their less-educated 
peers. A reason for this might be that individuals with more education age slower. There are 2 complications in testing this hypothesis. First, 
there exists no definitive measure of biological aging. Second, shared genetic factors contribute toward both lower educational attainment and 
the development of age-related diseases. Here, we tested whether the protective effect of educational attainment was associated with the pace 
of aging after accounting for genetic factors.
Methods:  We examined data from 5 studies together totaling almost 17,000 individuals with European ancestry born in different countries 
during different historical periods, ranging in age from 16 to 98 years old. To assess the pace of aging, we used DunedinPACE, a DNA methylation 
algorithm that reflects an individual’s rate of aging and predicts age-related decline and Alzheimer’s disease and related disorders. To assess 
genetic factors related to education, we created a polygenic score based on the results of a genome-wide association study of educational 
attainment.
Results:  Across the 5 studies, and across the life span, higher educational attainment was associated with a slower pace of aging even after 
accounting for genetic factors (meta-analysis effect size = −0.20; 95% confidence interval [CI]: −0.30 to −0.10; p = .006). Further, this effect 
persisted after taking into account tobacco smoking (meta-analysis effect size = −0.13; 95% CI: −0.21 to −0.05; p = .01).
Discussion:  These results indicate that higher levels of education have positive effects on the pace of aging, and that the benefits can be 
realized irrespective of individuals’ genetics.
Keywords: Pace of aging, Education, Epigenetic clocks

Individuals with more formal education are at lower risk than 
their less-educated peers of developing multiple age-related 
diseases, including type 2 diabetes, hypertension, cardiovascu-
lar disease (Agardh et al., 2011; Degano et al., 2017; Dupre, 
2007; Kubota et al., 2017), and Alzheimer’s disease and re-
lated dementias (Sharp & Gatz, 2011; Xu et al., 2015). One 
reason for this may be that individuals with more formal ed-
ucation age slower. The geroscience hypothesis proposes that 
biological aging, conceptualized as the gradual and progres-

sive deterioration of biological system integrity (Kirkwood, 
2005), increases vulnerability to multiple age-related diseases 
(Kennedy et al., 2014). Thus, while all individuals age chrono-
logically at the same rate, some individuals age much faster 
biologically. Because lower educational attainment is such a 
powerful predictor of multiple, different age-related diseases 
and early mortality, it is possible that education exerts its in-
fluence on age-related diseases not via disease-specific social 
and biological mechanisms but by accelerating whole-body 
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biological aging. Accelerated biological aging would help to 
explain the wide-ranging health effects of education (Hahn & 
Truman, 2015; Zajacova & Lawrence, 2018)

A difficulty in evaluating the hypothesis that educational 
attainment is negatively associated with accelerated aging is 
that, at present, there is no widely accepted measure of bio-
logical aging (Cohen et al., 2020; Crimmins et al., 2021). But 
progress on this front is rapid, including efforts to measure 
individual differences in the pace of aging using -omics data 
(Rutledge et al., 2022), especially genome-wide methylation 
data. DNA methylation is an epigenetic mechanism by which 
specific points of the genome (cytosines) are chemically mod-
ified (methylated) and thereby influence gene regulation. 
Many efforts to develop measures of aging have focused on 
DNA methylation quantified in blood, in part because it is 
a biological substrate that is sensitive to age-related changes 
(Horvath & Raj, 2018; Levine, 2020). Using machine learn-
ing, these efforts involve developing algorithms to capture 
information about aging by combining measurements of 
DNA methylation at multiple sites across the genome. Such 
algorithms can be summarized in terms of developmental 
“generations.” The first generation of methylation algo-
rithms was trained on chronological age in samples ranging 
in age from children to older adults. These algorithms iden-
tify patterns of methylation that vary by chronological age; 
however, if an individual’s score on such clocks is older than 
their actual age, it is inferred that they are biologically older. 
The first-generation algorithms include the “Hannum clock” 
(Hannum et al., 2013) and the “Horvath clock” (Horvath, 
2013). The second generation of methylation algorithms 
included measures of people’s current physiological status 
in order to identify methylation patterns that account for 
variation in current health status and that predict mortal-
ity. These second-generation algorithms include PhenoAge 
(Levine et al., 2018) and GrimAge (Lu et al., 2019). In con-
trast to these earlier algorithms that relied on cross-sectional 
measures of current health to estimate relative biological 
age third-generation algorithm has been recently devel-
oped, DunedinPACE (Pace of Aging Calculated from the 
Epigenome), which is unique in predicting an individual’s 
rate of aging. Unlike the prior clocks, DunedinPACE was 
based on geroscience theory, which specifies the definition of 
aging as “the gradual, progressive, synchronized deteriora-
tion of function in multiple organ systems of the body over 
years of time.” No other measure of aging operationalizes 
this theory. The DunedinPACE algorithm was developed by 
first measuring people’s rate of physiological change over 
time and then identifying the methylation patterns that opti-
mally captured individual differences in their age-related 
decline (Belsky et al., 2022). Specifically, age-related changes 
in 19 cardiovascular, metabolic, renal, immune, dental, 
and pulmonary biomarkers among individuals of the same 
chronological age over a 20-year observation period in the 
Dunedin Longitudinal Study (Elliott et al., 2021) were mea-
sured. Methylation patterns at the end of the observation 
period were then identified which estimated how fast aging 
occurred during the years leading up to the point of mea-
surement (Belsky et al., 2022). Thus, DunedinPACE distills 
multiple decades of longitudinal change in biomarker data 
to a single point-in-time measure and was designed to cap-
ture methylation patterns reflecting individual differences 
in age-related decline. This new measurement tool can now 
be exported to diverse studies with DNA methylation data 

to test the hypothesis that lower educational attainment is 
associated with accelerated aging.

A challenge in testing this hypothesis is that lower edu-
cational attainment and greater susceptibility to age-related 
diseases share genetic risk factors (Boardman et al., 2015; 
Marioni et al., 2016; Wedow et al., 2018). Large-scale 
genome-wide association studies (GWAS) have uncovered 
many genetic variants (single nucleotide polymorphisms; 
SNPs) that are associated with educational attainment (Lee 
et al., 2018). These SNPs can be condensed into a single met-
ric of the genetic likelihood of education, a “polygenic score” 
(PGS). This PGS not only predicts how much education indi-
viduals attain, but is also statistically associated with many 
health outcomes such as metabolic dysregulation, coronary 
heart disease, and frailty (Ding et al., 2019; Huibregtse et al., 
2021). Shared genetic etiology between educational attain-
ment and age-related diseases raises the possibility that edu-
cational attainment is associated with accelerated aging not 
because formal education protects individuals from more 
rapid age-related decline, but because individuals who attain 
more education are genetically predisposed to better health 
more generally. The scientific, policy, and ethical implications 
of these alternative pathways are not inconsequential. They 
raise questions about whether improving access to formal 
education may slow the process of aging and protect peo-
ple from disease (Zimmerman & Woolf, 2014) and they flag 
concerns about genetic essentialism and the geneticization of 
social and health inequalities (Shostak et al., 2009). These dis-
cussion points beg the important question: can education be a 
lever for reducing unhealthy population aging?

Here we leveraged data from five studies in developed 
nations to ask whether the protective effects of formal edu-
cation against accelerated aging accrue despite differences 
between people in their education-related genetics. We tested 
this in three steps. First, in each study, we evaluated an indi-
vidual’s pace of aging by applying the DunedinPACE algo-
rithm to their genome-wide DNA methylation data. We then 
tested if higher educational attainment was associated with 
a slower pace of aging. Second, we used genome-wide SNP 
data to quantify each individual’s education-related genetics 
(as captured by a PGS). We then tested whether associations 
between higher educational attainment and slower pace of 
aging persisted irrespective of genetic differences between 
people and if higher educational attainment benefitted all 
individuals equally. Third, we tested whether the associa-
tion between educational attainment and pace of aging was 
explained by tobacco smoking. Tobacco smoking is much 
more common among individuals who have not obtained 
high levels of education (Centers for Disease & Prevention, 
2010), and exposure to tobacco smoking harms virtually 
every organ in the body. Tobacco smoking could thus be a 
potent mechanism by which low educational attainment 
accelerates whole-body aging. Beyond the negative biological 
impact of tobacco-related toxins, tobacco smoking captures 
many personological and psychosocial factors that antedate 
the completion of formal education and that put people at 
risk for faster aging. For example, adolescents who become 
lifelong tobacco smokers are characterized by high levels 
of negative emotionality (e.g., stress reactivity, aggression, 
and feelings of alienation) and low levels of behavioral con-
straint (e.g., greater risk-taking, impulsivity (Slutske et al., 
2005), which portend later poor health and early mortality 
(Chiang et al., 2018; Jokela et al., 2013). Thus, controlling for 
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tobacco smoking captures unmeasured confounding beyond 
the health effects of tobacco smoking.

The five studies included in this article represent almost 
17,000 individuals born and raised in different countries and 
in different historical periods. By including people from dif-
ferent places and time, we test whether the protective effect of 
education generalizes across geographical and historical vari-
ations in educational and health care practices and policies.

Method
Data Sources
We utilized data from five cohorts. These were (a) the 
Dunedin study (New Zealand, N = 804, 50.6% male, age 
= 45 years), (b) the HRS (United States, N = 2,311, 43.2% 
male, mean(standard deviation [SD]) age = 71.6(9.6)), (c) the 
Understanding Society study (United Kingdom, N = 3,620, 
44.4% male, mean(SD) age = 53.0(15.5)), (d) the Generation 
Scotland study (Scotland, N = 8,613, 40.9% male, mean(SD) 
age = 49.7(13.7), and (e) the E-Risk study (England and 
Wales, N = 1,507, 50.6% male, age = 18 years). Detailed 
descriptions and demographics of each study can be found in 
Supplemental Figure 1 and Supplemental Methods.

Calculation of DNA Methylation Aging Measures
For all studies, DunedinPACE was calculated using the R 
package “DunedinPACE” as described in Belsky et al. (2022) 
and publicly available on GitHub (https://github.com/dan-
belsky/DunedinPACE). Within each study, DunedinPACE val-
ues were standardized to mean = 0, SD = 1. All other DNA 
methylation measures were calculated using the online calcu-
lator found at https://dnamage.genetics.ucla.edu/new. Where 
appropriate, estimates of age advancement were derived from 
these values by residualizing for chronological age at the time 
of assessment.

Education Measurements
In each cohort, educational attainment was measured as the 
highest level of education on a 4-point scale, ranging from 
no school qualification to a university degree or higher. To 
aid cross-study comparisons, cohort-specific measures of edu-
cational attainment qualifications were binned into classes 
reflecting increasingly higher educational achievement, as 
follows:

Dunedin Study: 0 = “No school qualification”; 1 = “School 
certificate”; 2 = “High school graduate”; 3 = “University 
degree or higher”; Health and Retirement Study (HRS): 
0 = “Less than high school”, 1 = “General Educational 
Development certificate,” 2 = “High school graduate or some 
college,” 3 = “College and above”; Understanding Society 
study, 0 = “No qualification,” 1= “GCSE etc.”/“Other qual-
ification,” 2 = “A-level etc.,” 3 = “Degree”/“Other higher 
degree”; Generation Scotland Study: 0 = “No qualification,” 1 
= “Standard Grade/O Level/GCSE”/“CSEs or equivalent”/“-
School leavers certificate”/“Other,” 2 = “NVQ/HND/HNC or 
equivalent”/“Higher Grade,” 3 = “University degree or high-
er”/“College/university degree”/“Other professional or tech-
nical qualification”; and E-Risk: 0 = “No qualification,” 1 = 
“GCSE grade D-G,” 2 = “GCSE grade A*-C,” 3 = “A level.” 
Across all cohorts, the four levels of educational achievement 
show a dose–response relationship with aging as measured by 
DunedinPACE (Figure 1); education was therefore analyzed 
as a continuous variable.

Polygenic Score Measurements
PGS was conducted following the method described by 
Dudbridge (2013) using PRSice (Euesden et al., 2015). For 
each study, we used summary statistics from a GWAS of edu-
cational attainment (Lee et al., 2018) to compute PGS for 
educational attainment. We used all matched SNPs to com-
pute PGS irrespective of nominal significance for their associ-
ation with educational achievement. SNPs were not clumped 
or pruned for LD prior to analysis. To control for possible 
residual population stratification, scores were residualized for 
the first 10 principal components estimated from the genome-
wide SNP data. Within each study, we standardized residuals 
(mean = 0, SD = 1) for analysis.

Tobacco Smoking
Exposure to tobacco smoking was estimated from DNA meth-
ylation data following published guidelines (Sugden et al., 
2019). Briefly, within each study, DNA methylation values for 
2,623 DNA methylation probes associated with tobacco smok-
ing were weighted by the coefficient of association with smok-
ing and summed to produce a smoking PolyEpiGenetic Score 
(smPEGS). This score was standardized to mean = 0, SD = 1. 
In addition, we also employed data on self-reported tobacco 
smoking (Generation Scotland: pack years smoked up to the 
time of assessment (standardized to mean = 0, SD = 1); all other 
studies: current smoking at the time of assessment; yes/no).

Data Analysis and Statistical Methods
All data analyses were performed in the R statistical envi-
ronment apart from the genetic sensitivity analysis (described 
later) which was conducted in Mplus. For association analy-
ses, we used linear regression models in the Dunedin, HRS, 
and Understanding Society studies; for Generation Scotland 
and E-Risk, we used panel linear models with Huber–
White robust standard errors (using R packages “plm” 
and “lsmeans”) to account for familial clustering. Models 

Figure 1.  Distribution of DunedinPACE values across categories of 
educational attainment in (A) the Dunedin Study, (B) the U.S. Health 
and Retirement Study (HRS), (C) the Understanding Society Study (D) 
Generation Scotland Study, and (E) the E-Risk Study. DunedinPACE 
values are standardized within study to mean = 0, SD = 1. Educational 
categories are 0 = no qualification, 1 = School Certificate, 2 = High 
School Grad, 3 = University degree or higher for figures A, B, C, and D 
and 0 = no qualification (reference category), 1 = GCSE D-G, 2 = GCSE 
A*-C, 3 = A level for the E-Risk study (E). Boxes represent interquartile 
range (IQR), the line represents median and the whiskers represent 
1.5 × IQR beyond upper and lower quartile. For comparison purposes, 
y-axis limits are standardized across plots. GCSE = General Certificate of 
Secondary Education, SD = standard deviation.
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included covariates for sex, age (except for the Dunedin and 
E-risk studies where participants are the same age), and tech-
nical covariates consisting in the Dunedin, HRS, and E-Risk 
studies of the first 32, 6, and 28 PCs from principal com-
ponent analysis of methylation control probes, explaining 
90% of variation; in Understanding Society and Generation 
Scotland of DNA methylation processing rack.

To perform t- and Z-ratio tests, we used the R packages 
“lsmeans” and “geepack” (for the Generation Scotland and 
E-Risk studies). To perform meta-analysis and plot results, 
we used the R packages “metagen” (using the restricted 
maximum likelihood estimator, REML, the Knapp–Hartung 
adjustment, and the random-effects model) and “forest.” 
We used the R package “Evalues” to calculate E-values. To 
address potential population stratification, data from all five 
cohorts were restricted to participants with white ancestry. 
All analyses were performed in parallel by a second, indepen-
dent researcher to confirm reproducibility.

Data Availability
For the Dunedin and E-Risk studies, data may be accessed 
through agreement with the Study investigators (https://moffit-
tcaspi.trinity.duke.edu/research-topics/dunedin; https://moffit-
tcaspi.trinity.duke.edu/research-topics/erisk). For HRS, data may 
be accessed via the HRS (https://hrs.isr.umich.edu/data-prod-
ucts) with restricted health data available from NIAGADS. For 
Understanding Society, data may be accessed upon approval 
by the study coordinators (https://www.understandingsociety.
ac.uk/documentation/health-assessment/accessing-data/genet-
ics-application). For Generation Scotland, data may be accessed 
upon approval by the study coordinators (https://www.ed.ac.uk/
generation-scotland/for-researchers/access).

Results
Educational Attainment Is Associated With the Pace 
of Aging
We first tested the association between educational attainment 
and the pace of aging in the Dunedin Study. Participants in the 
Dunedin Study were all born during the same year (1972–1973) 
in the same city (Dunedin, New Zealand). As such, they had 
opportunities to interact with the same educational and health 
systems with minimal influence of temporal or geographical 
effects. Dunedin participants who attained more education aged 
at a significantly slower rate than participants who attained less 
education (b [95% confidence interval {CI}] = −0.38 [−0.44 to 
−0.31], Table 1, Figure 1). Individuals with the highest level of 
education aged 1.8 months per year more slowly than individu-
als with no education (Supplementary Table 1, Panel D).

Next, we turned to the HRS, a population-representative 
cohort of 50+ year olds from the United States limited to those 
of European ancestry for this analysis. This cohort represents 
individuals entering later life in a region with different edu-
cational and health systems than that of the midlife Dunedin 
Study members. HRS participants who attained more educa-
tion aged at a significantly slower rate than participants who 
attained less education (b [95% CI] = −0.20 [−0.24 to −0.16], 
Table 1, Figure 1). Individuals with the highest level of educa-
tion aged 1.32 months per year more slowly than individuals 
with no education (Supplementary Table 1, Panel D).

We next asked whether we could replicate this association 
across the life span. To do this, we turned to two independent 
studies. The Understanding Society study includes individuals 

ranging in age from 16 to 98 (mean age = 53.0 years; SD = 
15.5 years). The Generation Scotland study includes individ-
uals ranging in age from 18 to 93 (mean age = 49.7 years; 
SD = 13.7 years). Individuals in each study were exposed 
to different educational and health opportunities related to 
the era in which they were born (between 1915 and 1990 
for Understanding Society and between 1914 and 1995 for 
Generation Scotland). Moreover, both Understanding Society 
(sampling England, Wales, Northern Ireland, and Scotland) 
and Generation Scotland (sampling Scotland) are based in the 
United Kingdom, and as such reflect educational and health 
practices that are not necessarily shared with New Zealand 
or the United States. Despite these differences, results across 
both studies were very similar and resembled those observed 
in Dunedin and HRS. Study participants who attained more 
education aged at a significantly slower rate than participants 
who attained less education (Understanding Society: b [95% 
CI] = −0.20 [−0.23 to −0.17]; Generation Scotland: b [95% 
CI] = −0.20 [−0.22 to −0.18]; Table 1, Figure 1). Individuals 
with the highest level of education aged 1.44 and 1.08 months 
per year more slowly than individuals with no education in 
the Understanding Society and Generation Scotland Studies, 
respectively (Supplementary Table 1, Panel D).

Due to nationwide social policy changes, access to edu-
cation and health care can vary for different generations of 
individuals born in the same country. These generational 
differences might alter the patterns of association between 
educational attainment and aging. To test this possibility, we 
subset the Understanding Society and Generation Scotland 
data into five groups each to capture individuals who were 
born within the same 15- to 16-year age bands. Analysis of 
the association between pace of aging and educational attain-
ment within each of these age groups showed that, in both 
studies, individuals with the highest level of education had 
the slowest pace of aging regardless of how old they were or 
when they were born. An exception to this was among the 
very oldest group of individuals in each of the two studies 
(Figure 3); this may reflect selective participation and selective 
mortality, combined with a small subsample size. In general, 
the positive effects of education on pace of aging are experi-
enced across the life span and are not restricted to individuals 
who were born and raised during specific time periods.

Lastly, we tested the link between educational attainment 
and the pace of aging in a contemporary cohort of young 
individuals who were currently in the process of realizing 
their educational potential. We turned to the E-Risk study, 
which includes individuals born in the United Kingdom in 
1994–1995. Study members were assessed at age 18, at which 
point we measured how far they had advanced in the U.K. 
educational system. This cohort offered the opportunity to 
test whether educational attainment was associated with 
early whole-body aging, years before the typical hallmarks 
of aging are manifest. E-Risk participants who attained more 
education aged at a significantly slower rate than participants 
who attained less education (b [95% CI] = −0.17 [−0.21 to 
−0.12]; Table 1, Figure 1). Individuals with the highest level of 
education aged 0.48 months per year more slowly than indi-
viduals with no education (Supplementary Table 1, Panel D).

Genetics of Educational Attainment Are Associated 
With the Pace of Aging
In each of the five cohorts, we calculated each individual’s PGS 
for educational attainment. In each cohort, individuals with 
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higher PGSs attained significantly more education (Figure 2). 
The education PGS accounted for 9%–13% of the variance 
in educational attainment across the cohorts, a finding that is 
consistent with published estimates (Lee et al., 2018). Mean 
differences in PGSs between individuals with the lowest ver-
sus highest level of education in each study were substantial, 
ranging from 0.69 SD units in Understanding Society to 0.97 
SD units in the HRS (Supplementary Table 1).

Consistent with evidence that educational attainment and 
aging-related health are influenced by similar genetic factors, 
we found individuals with a higher educational attainment 
PGS also aged at a significantly slower pace in all five cohorts 
(Figure 2). Mean differences in PGS between individuals 
who were aging slowest versus fastest (bottom and top quar-
tiles of the DunedinPACE distribution) in each study were 
substantial, ranging from 0.26 SD units among the young 
participants in the E-Risk study to 0.50 SD units among mid-
dle-aged Dunedin Study participants.

Do the beneficial effects of education on slower aging 
persist after taking education-related genetic differences into 
account?
To answer this, we repeated tests of association between edu-
cational attainment and pace of aging, controlling for edu-
cation PGS. Across all five cohorts, individuals who attained 
more education aged at a significantly slower rate than 

participants who attained less education even after controlling 
for an individual’s PGS (Table 1). This effect was observed in 
middle-aged New Zealanders (Dunedin Study, b [95% CI] = 
−0.36 [−0.43 to −0.29]), older-aged Americans (HRS, b [95% 
CI] = −0.18 [−0.22 to −0.13]), British and Scottish individ-
uals of varied age (Understanding Society and Generation 
Scotland, b [95% CI] = −0.16 [−0.20 to −0.13] and b [95% 
CI] = −0.17 [−0.19 to −0.15], respectively) and British teenag-
ers (E-Risk, b [95% CI] = −0.16 [−0.21 to −0.11]).

Next, we tested whether the benefits of more education 
accrue equally to individuals at different levels of the PGS 
distribution, from low to high. In each of our five cohorts, 
we subset individuals into quintiles according to their PGSs 
(from lowest 20% to highest 20%). Analysis of the association 
between educational attainment and pace of aging showed 
that, in all studies, individuals with higher levels of education 
had the slowest pace of aging regardless of their location on the 
education PGS distribution (Supplementary Figure 2). Further, 
the magnitude of association between educational attainment 
and pace of aging within each PGS quintile was not signifi-
cantly different from that of any other quintile within each 
cohort. The association between higher educational attain-
ment and slower pace of aging does not differ across the dis-
tribution of education-related genetic differences.

In summary, higher educational attainment was associated 
with a slower pace of aging irrespective of genetic differences 

Table 1.  Association Between Education Polygenic Scores (PGS), Educational Attainment, and DunedinPACE

Study A B C

Education PGS Education Education PGS+ Education

b [95% CI] p b [95% CI] p b [95% CI] p b [95% CI] p 

Dunedin −0.17 [−0.24 to −0.10] <.001 −0.38 [−0.44 to −0.31] <.001 −0.08 [−0.15 to −0.01] .022 −0.36 [−0.43 to −0.29] <.001

 � Adjusted 
for smok-
ing

−0.12 [−0.18 to −0.06] <.001 −0.26 [−0.33 to −0.20] <.001 −0.06 [−0.13 to 0.00] .048 −0.25 [−0.31 to −0.18] <.001

HRS −0.13 [−0.17 to −0.09] <.001 −0.20 [−0.24 to −0.16] <.001 −0.08 [−0.12 to −0.04] <.001 −0.18 [−0.22 to −0.13] <.001

 � Adjusted 
for smok-
ing

−0.10 [−0.1 to −0.07] <.001 −0.14 [−0.18 to −0.10] <.001 −0.07 [−0.11 to −0.03] <.001 −0.12 [−0.16 to 0.08] <.001

Under-
standing 
Society

−0.18 [−0.21 to −0.15] <.001 −0.20 [−0.23 to −0.17] <.001 −0.14 [−0.17 to −0.11] <.001 −0.16 [−0.20 to −0.13] <.001

 � Adjusted 
for smok-
ing

−0.13 [−0.15 to −0.10] <.001 −0.11 [−0.14 to −0.08] <.001 −0.11 [−0.14 to −0.08] <.001 −0.08 [−0.11 to −0.06] <.001

Generation 
Scotland

−0.15 [−0.17 to −0.13] <.001 −0.20 [−0.22 to −0.18] <.001 −0.10 [−0.12 to −0.08] <.001 −0.17 [−0.19 to −0.15] <.001

 � Adjusted 
for smok-
ing

−0.10 [−0.11 to −0.08] <.001 −0.11 [−0.13 to −0.09] <.001 −0.07 [−0.09 to −0.05] <.001 −0.09 [−0.11 to −0.07] <.001

E-Risk −0.08 [−0.13 to −0.03] .007 −0.17 [−0.21 to −0.12] <.001 −0.03 [−0.08 to −0.02] .293 −0.16 [−0.21 to −0.11] <.001

 � Adjusted 
for smok-
ing

−0.05 [−0.10 to −0.01] .057 −0.12 [−0.17 to −0.07] <.001 −0.03 [−0.08 to 0.02] .368 −0.11 [−0.16 to −0.06] <.001

Notes: For these analyses, education (reported as highest educational achievement) is treated as a continuous variable. Across all five studies, individuals 
with high education PGS (A) and high educational attainment (B) had the slowest pace of aging (DunedinPACE). Further, an individuals’ genetic propensity 
to higher educational attainment (PGS) did not explain the association between education and DunedinPACE; education remained significantly associated 
with DunedinPACE even after controlling for PGS (C). Effect sizes after adjusting for tobacco smoking (using the DNA methylation-derived PolyEpiGenetic 
score, smPEGS) for each study are also shown. DunedinPACE, PGS, and education are standardized to mean = 0, SD = 1. All models include sex as a 
covariate. Additional covariates to control for confounders (e.g., age, batch) are also included when appropriate. To account for nonindependence of 
observations in the Generation Scotland and E-Risk studies, we report p values associated with Huber–White robust standard error correction. b = 
standardized regression coefficient; CI = confidence interval; HRS = Health and Retirement Study; p = p value; SD = standard deviation.
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related to education, and this effect was seen across individu-
als from different geographical regions, born during different 
eras, and, in the case of the E-Risk Study, still accumulating 
their educational achievements. Higher education has the 
potential to benefit all individuals irrespective of genetic dif-
ferences between them that predict how much education they 
are likely to attain.

Meta-Analysis of the Association Between 
Educational Attainment and the Pace of Aging
We performed a meta-analysis of the results in the five cohorts 
(N = 16,855) to establish the overall effect size of the associ-
ation between educational attainment and the pace of aging 
after controlling for each individual’s PGS for educational 
attainment. The overall effect size was significantly different 
from zero (effect size = −0.20, 95% CI [−0.30 to −0.10]). We 
noted significant heterogeneity in the estimates across the 
five cohorts (I2 = 87%, heterogeneity χ2 = 29.64, Figure 4A). 
Heterogeneity statistics may be biased upward with only five 
studies (von Hippel, 2015). Nevertheless, we reperformed the 
meta-analysis after removing the largest estimate, from the 
Dunedin Study; heterogeneity was no longer significant (I2 = 
0%, heterogeneity χ2 = 0.35, p = .95), and the overall effect 
size was little changed (effect size = −0.17, 95% CI [−0.18 to 
−0.16]).

Robustness to Sources of Confounding and Bias
Is the association between educational attainment and pace 
of aging explained by tobacco smoking?
—To test whether tobacco smoking accounts for the link 
between low educational attainment and accelerated aging, 
we repeated all preceding analyses controlling for each 
individual’s exposure to tobacco smoking. To ensure that 
consistent measures of smoking were used across the vari-
ous studies, we utilized a Smoking PolyEpiGenetic Score 
(smPEGS) that indexes tobacco exposure via variation 

Figure 3.  Association between DunedinPACE and education within age 
group quintiles in the Understanding Society (A) and Generation Scotland 
Study (B). In both cohorts, individuals were binned into one of five 
groups on the basis of age, each group representing a 15- to 16-year age 
span. Bar charts show the distribution of DunedinPACE values across 
categories of educational attainment in each of the five age groups. 
On average, pace of aging increases across the age groups, but within 
each age group, higher education predicts slower pace of aging. For 
each study, the upper table reports within-group values for the number 
of individuals per group (N), mean and SD of DunedinPACE, and slopes 
of the association between educational attainment and DunedinPACE 
(adjusted for sex and technical covariates). The lower table reports the t- 
(Understanding Society) or Z- (Generation Scotland) ratios comparing the 
slopes between educational attainment and DunedinPACE for different 
age groups. Values in bold are significant at the p < .05 level. Overall, 
higher education predicts slower pace of aging across all age groups, 
although not significantly so among the very old. CI = confidence 
interval; SD = standard deviation.

Figure 2.  Distribution of education polygenic score (PGS) values across 
categories of educational attainment (left-hand column) and association 
with DunedinPACE (right-hand column) in (A) the Dunedin Study, N = 
804, (B) the U.S. Health and Retirement Study (HRS), N = 2,311, (C) 
the Understanding Society Study, N = 3,620, (D) Generation Scotland 
Study, N =8,797, and (E) the E-Risk Study, N =1,507. Both PGS and 
DunedinPACE values are standardized within study to mean = 0, SD = 1. 
Educational categories are 1 = School Certificate, 2 = High School Grad, 
3 = University degree or higher for figures A, B, C, and D, and 0 = no 
qualification (reference category), 1 = GCSE D-G, 2 = GCSE A*-C, 3 = A 
level for the E-Risk study (E). Boxes represent interquartile range (IQR), 
the line represents median and the whiskers represent 1.5 × IQR beyond 
upper and lower quartile. For comparison purposes, y-axis limits are 
standardized across plots. In the right-hand column, the line represents 
the linear regression (with surrounding confidence intervals), and the 
Pearson’s correlation coefficient is denoted by r and associated p value 
by p. GCSE = General Certificate of Secondary Education, SD = standard 
deviation.
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across smoking-associated DNA methylation sites (Sugden 
et al., 2019). Importantly, smPEGS indexes cumulative life-
time exposure to tobacco smoking, not only current smok-
ing. After controlling for smoking, educational attainment 
remained significantly associated with the pace of aging in all 
five cohorts (Table 1). Meta-analysis estimated that tobacco 
smoking attenuated the association between educational 
attainment and pace of aging by one third, but the associ-
ation remained significantly different from zero (effect size 
= −0.13, 95% CI [−0.21 to −0.05], I2 = 81%, heterogene-
ity χ2 = 20.83, Figure 4B), even after we removed the largest 
Dunedin Study estimate from the meta-analysis (effect size 
= −0.09, 95% CI [−0.11 to −0.08], I2 = 0%, heterogeneity 
χ2 = 1.45). Furthermore, these patterns remained consistent 
if instead, we controlled for self-reported tobacco smoking 
(Supplementary Table 2) rather than smPEGS. Tobacco smok-
ing does not fully explain the association between higher edu-
cational attainment and slower pace of aging.

Selection bias.
—Selection into research studies as well as dropout from 
studies may exert a biasing effect on both genetic and phe-
notypic associations. It is increasingly appreciated that these 
problems characterize many large publicly available stud-
ies (Tyrrell et al., 2021). In contrast, both the Dunedin and 
E-Risk studies represent the populations from which they 
were drawn and have high retention rates with no evidence 
of selective attrition in relation to genetic and exposure vari-
ables (see Supplementary Figure 3). Because we observed 
similar patterns of association in these two studies versus 
in the three other studies, we included where endogenous 
selection bias (Akimova et al., 2021) and healthy volunteer 
bias (Brayne & Moffitt, 2022) are thought to exist (e.g., see 
Lynn & Borkowska, 2018; Michaud et al., 2011; Smith et 
al., 2013), it is unlikely that selection bias accounts for the 
associations reported here.

Genetic sensitivity analysis.
—We used PGS for educational attainment to test if genetic 
differences between individuals could explain the association 
between an individual’s educational attainment and their 
pace of aging. However, PGS explains only a portion of the 
heritability of educational attainment and as such controlling 
for the PGS alone may not capture all genetic confounding 
(Pingault et al., 2022). For context, in the present study, the 
education PGS explains 9%–13% of the variation in edu-
cational attainment, whereas the SNP heritability of edu-
cational attainment has been estimated between ~15% and 
21% (Davies et al., 2016; Pingault et al., 2021). Unmeasured 
genetic confounding could be present.

To test if additional genetic confounding might explain the 
association between educational attainment and pace of aging, 
we performed genetic sensitivity analyses across all five stud-
ies using GsensX (Pingault et al., 2021), a method to adjust 
associations for the presence of unidentified genetic factors 
influencing both risk factor and outcome. First, using a previ-
ously reported SNP heritability estimate of 14.7% (Pingault 
et al., 2022), we calculated the total effect size, effect size of 
genetic confounding, and adjusted effect size of the associ-
ation between educational attainment and DunedinPACE 
(controlling for education PGS) across the five studies. Next, 
we performed meta-analysis of these effect sizes to calculate 
the combined estimates for the total effect size, proportion of 
genetic confounding, and adjusted effect size (Supplementary 
Figure 4A–C). The portion of the combined effect explained 
by genetic confounding was −0.06 (95% CI [−0.09, −0.02], p 
= .01, Supplementary Figure 4B), corresponding to 25.7% of 
the total effect size. After taking this genetic confounding into 
account, higher educational attainment remained significantly 
associated with slower pace of aging, although the effect was 
reduced (estimate = −0.16, 95% CI [−0.28, −0.05], p = .02), 
Supplementary Figure 4C). Higher educational attainment is 
associated with slower pace of aging, even after taking both 
measured (via educational attainment PGSs) and unmeasured 
genetic confounding into account.

Unobserved heterogeneity/confounding bias.
—To ascertain the robustness of the association between edu-
cational attainment and DunedinPACE to other unmeasured 
confounding, we computed E-values for the estimate generated 
through meta-analysis. E-values represent the magnitude of 
association necessary between an unmeasured confounder and 
both exposure and outcome to fully account for observed asso-
ciations (Haneuse et al., 2019; VanderWeele & Ding, 2017).

The E-value for the meta-analysis of the association 
between educational attainment and the pace of aging after 
controlling for both education PGS and tobacco smoking 
(Figure 4B) was 1.69; that is, unmeasured confounder(s) 
would need to increase the probability of having a faster ver-
sus slower pace of aging 1.69 times the reported estimate to 
fully explain the observed associations. E-values for associa-
tions between DunedinPACE and education for each individ-
ual study are reported in Supplementary Table 3.

Sensitivity Analysis: Patterns of Association With 
Earlier Generations of DNA Methylation Clocks
To test the specificity of the pattern of associations between 
DunedinPACE and educational attainment, we repeated the 
primary analyses substituting alternate DNA methylation 
measures of accelerated aging (the first-generation clocks 

Figure 4.  Forest plots of the association between educational attainment 
and DunedinPACE after controlling for the genetics of educational 
attainment and tobacco smoking. (A) Meta-analysis of the association 
between educational attainment and DunedinPACE controlling for the 
education PGS (and technical covariates). (B) Meta-analysis of the same 
model after the addition of exposure to tobacco smoking (smPEGS). The 
effect size estimate (±95% CI) of the meta-analysis result is shown by 
the diamond, and the estimated prediction interval is shown by the red 
bar. CI = confidence interval; HRS = Health and Retirement Study; SD = 
standard deviation.
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from Horvath [Horvath, 2013] and Hannum [Hannum et al., 
2013], and the second-generation clocks PhenoAge [Levine 
et al., 2018] and GrimAge [Lu et al., 2019]). Of these four 
measures, only GrimAge showed similar patterns of associa-
tion with education to that of DunedinPACE (Supplementary 
Table 4). This observation mirrors what is increasingly 
observed in other studies (e.g., Graf et al., 2022; Reed et al., 
2022): whereas the Horvath, Hannum, and PhenoAge mea-
sures are yielding null, weak, and inconsistent associations in 
various validity tests, GrimAge and DunedinPACE are yield-
ing robust associations. Of note, it is observed that GrimAge 
tends to be more strongly associated with tobacco smoking 
than DunedinPACE (e.g., Kankaanpaa et al., 2022) and this is 
evidenced here by the greater attenuation of associations with 
education after controlling for smoking. An explanation for 
this could be that GrimAge is comprised of data about pack 
years of tobacco smoking in its construction, meaning it is less 
likely to be independent of tobacco’s effects.

Discussion
Higher educational attainment is robustly associated with 
both better brain health and better physical health across the 
life span. But it is less clear if attaining more formal education 
is also associated with slower cognitive and physical aging. 
In fact, in the realm of cognitive aging, evidence suggests that 
the association between education and age-related cognitive 
decline might be negligible (Lovden et al., 2020). Here we 
leveraged a novel approach to measuring the whole-body bio-
logical pace of aging using a DNA methylation algorithm har-
monized across multiple different cohorts to test if education 
is associated with slower physical aging across the life span.

Across five studies totaling almost 17,000 individuals, we 
demonstrate that higher educational attainment was associ-
ated with slower pace of aging, and that this persisted after 
accounting for an individual’s education-related genetics. 
This finding was observed in middle-aged individuals from 
New Zealand (Dunedin study), older-aged individuals from 
the United States (HRS), individuals of different ages in the 
United Kingdom (Understanding Society and Generation 
Scotland Studies), and British teens (E-Risk Studies). Across 
different ages and geographical regions, higher educational 
attainment predicted slower pace of aging irrespective of 
genetic differences that are known to confer advantages in 
Western educational systems.

There are several strengths to the study. First, the finding 
that higher education predicts slower aging after account-
ing for genetic differences in the propensity to attain more 
education was replicated across five independent samples. 
Second, we replicated the association in samples from differ-
ent populations born during different time periods. Our stud-
ies sampled populations resident in New Zealand, the United 
States, and the United Kingdom, countries with independent 
education and health systems. The five studies included indi-
viduals from 16 to 98 years old; the wide age range of our 
samples means that individuals have been exposed to very 
different health or education policies throughout their life. 
Taken together, this suggests that associations are not specific 
to certain sociological or economic factors that advantaged 
certain generations of individuals in terms of education or 
health. The beneficial effect of education on the pace of aging 
over and above genetic inheritance was present regardless of 
when or where individuals were born.

There are some caveats. First, the study populations we ana-
lyzed are White and we are unable to extrapolate the findings 
to populations of other ethnicities. Individuals from non-
White populations have unequal access to both education and 
health care. In addition, the education PGS that we employed 
here was developed in white individuals; patterns of genetic 
linkage differ between ethnic groups, and there is mixed evi-
dence as to the applicability of this score in non-White popu-
lations (Lewis & Vassos, 2020). Furthermore, there is evidence 
that non-White underprivileged individuals who achieve high 
levels of education age faster and have poorer health out-
comes than both White individuals (Shuey & Willson, 2008) 
and their noneducated peers, and that the advantages of edu-
cational mobility on slower aging seen for white individuals 
are not evident for Black individuals (Graf et al., 2022). These 
findings suggest the mechanisms defining the link between 
education and aging might not operate in the same way across 
all ethnic groups. Second, our studies all sampled individuals 
from developed nations. Globally, these countries are among 
the most privileged in terms of access to both health and edu-
cational resources. We are, therefore, unable to test whether 
our findings are applicable to situations where education and 
health resources are scarcer. More studies sampling low- and 
middle-income countries are necessary to test the implications 
of our findings on a global level. Third, apart from genetic 
differences in the propensity to educational attainment, we 
did not rule out other potential confounds of the associa-
tion between educational attainment and slower aging. For 
example, it has been demonstrated that there are strong links 
between parental genetic and nongenetic factors that contrib-
ute to both the health and educational attainment of offspring 
(e.g., Wang et al., 2021). Using data on cross-generational fac-
tors and within-family designs will be crucial to investigate 
these factors; however, those data are not yet widely available 
along with data on DNA methylation and genetics that would 
enable us to test this. Despite this, our tests of unmeasured 
confounding suggest the associations we report are likely to be 
robust. Fourth, apart from smoking, we did not evaluate the 
intervening social and biological pathways that may account 
for the link between educational attainment and slower aging 
(Oblak et al., 2021; Raffington & Belsky, 2022). It will be 
especially important to evaluate these pathways via models 
that test the timing of risk in the life course (Chumbley et al., 
2021). Fifth, the association between education and the pace 
of aging suggests that it is not simply that truncated education 
hastens aging or that a university education slows aging, it 
is that the nongenetic association between education and the 
pace of aging appears to operate in a graded fashion. This sug-
gests that education may impart benefits across different levels 
of education, although it is not known whether the mecha-
nisms are the same throughout the gradient.

Taken together, these results suggest that higher levels of 
education have positive effects on the pace of aging, and that 
the benefits can be realized irrespective of an individual’s 
genetic endowment. Improving access to education has the 
potential to benefit all strata of society and could contribute 
to a healthier aging population.

Supplementary Material
Supplementary data are available at The Journals of 
Gerontology, Series B: Psychological Sciences and Social 
Sciences online.

http://academic.oup.com/psychsocgerontology/article-lookup/doi/10.1093/geronb/gbad056#supplementary-data
http://academic.oup.com/psychsocgerontology/article-lookup/doi/10.1093/geronb/gbad056#supplementary-data


Journals of Gerontology: SOCIAL SCIENCES, 2023, Vol. 78, No. 8 1383

Funding
This work was supported by the National Institutes of Health 
(R01AG069939 to T. E. Moffitt, HD077482 to A. Caspi, 
R01AG073207, R01AG032282 and HD077482 to T. E. 
Moffitt and A. Caspi, R01AG060110 to E. M. Crimmins, and 
R01AG073402, R01AG066887, and R01AG061378 to D. W. 
Belsky); the UK Medical Research Council (MR/P005918/1, 
and G1002190); the New Zealand Health Research Council 
Programme (16-604); Canadian Institute for Advanced 
Research (CF0249CP22034 to D. W. Belsky); and the North 
Carolina Biotechnology Center (2016-IDG-1013). The 
Dunedin Multidisciplinary Health and Development Research 
Unit is supported by the New Zealand Health Research 
Council, and has also received funding from the New Zealand 
Ministry of Business, Innovation and Employment. The gen-
eration of DNA methylation data in E-Risk was supported by 
a Distinguished Investigator Award to J. Mill by the American 
Asthma Foundation. Support was also received from the Jacobs 
Foundation. Generation Scotland received core support from 
the Chief Scientist Office of the Scottish Government Health  
Directorates (CZD/16/6) and the Scottish Funding Council 
(HR03006), and is currently supported by the Wellcome Trust 
(216767/Z/19/Z). Genotyping of the GS:SFHS samples was 
carried out by the Genetics Core Laboratory at the Edinburgh 
Clinical Research Facility, University of Edinburgh, Scotland, 
and was funded by the Medical Research Council UK and the 
Wellcome Trust (Wellcome Trust Strategic Award “STratifying 
Resilience and Depression Longitudinally” (STRADL) 
Reference 104036/Z/14/Z). The DNA methylation profiling 
and analysis were supported by Wellcome Investigator Award 
(220857/Z/20/Z, 104036/Z/14/Z) and through funding from 
NARSAD (Ref: 27404) and the Royal College of Physicians of 
Edinburgh (Sim Fellowship). Understanding Society is an ini-
tiative funded by the Economic and Social Research Council 
and various Government Departments, with scientific lead-
ership by the Institute for Social and Economic Research, 
University of Essex, and survey delivery by NatCen Social 
Research and Kantar Public. The research data are distrib-
uted by the UK Data Service. Fieldwork for the web survey 
was carried out by Ipsos MORI and for the telephone survey 
by Kantar.

Conflict of Interest
K. Sugden, A. Caspi, D. W. Belsky, D. L. Corcoran, R. Poulton, 
and T. E. Moffit are listed as inventors on a Duke University 
and University of Otago invention that is licensed to a com-
mercial entity. All other authors report no conflict of interest.

Acknowledgments
We would like to acknowledge the assistance of the Duke 
Molecular Physiology Institute Molecular Genomics Core for 
the generation of data for the manuscript.

Author Contributions
K. Sugden planned the study, sourced data, generated measures, 
developed models and software code, performed data analysis, 
and wrote the paper. A. Caspi planned the study, supervised 
the data analysis, provided funding, and wrote the paper. T. E. 
Arpawong, R. Houts, and J. Wertz performed data analysis. 
D. W. Belsky sourced data. T. E. Moffitt, E. M. Crimmins, L. 

Arseneault, and R. Poulton provided funding for and super-
vised data collection. D. L. Corcoran, J. S. Mill, E. Hannon, 
and B. S. Williams generated data and measures used in the 
manuscript. All authors reviewed and revised the manuscript.

References
Agardh, E., Allebeck, P., Hallqvist, J., Moradi, T., & Sidorchuk, A. 

(2011). Type 2 diabetes incidence and socio-economic position: A 
systematic review and meta-analysis. International Journal of Epi-
demiology, 40(3), 804–818. doi:10.1093/ije/dyr029

Akimova, E. T., Breen, R., Brazel, D. M., & Mills, M. C (2021). 
Gene-environment dependencies lead to collider bias in models 
with polygenic scores. Scientific Reports, 11(1), 9457. doi:10.1038/
s41598-021-89020-x

Belsky, D. W., Caspi, A., Corcoran, D. L., Sugden, K., Poulton, R., Arse-
neault, L., Baccarelli, A., Chamarti, K., Gao, X., Hannon, E., Har-
rington, H. L., Houts, R., Kothari, M., Kwon, D., Mill, J., Schwartz, 
J., Vokonas, P., Wang, C., Williams, B. S., & Moffitt, T. E. (2022). 
DunedinPACE, a DNA methylation biomarker of the pace of aging. 
Elife, 11, e73420. doi:10.7554/eLife.73420

Boardman, J. D., Domingue, B. W., & Daw, J. (2015). What can genes 
tell us about the relationship between education and health? 
Social Science and Medicine, 127, 171–180. doi:10.1016/j.
socscimed.2014.08.001

Brayne, C., & Moffitt, T. E. (2022). The limitations of large-scale 
volunteer databases to address inequalities and global challenges 
in health and aging. Nature Aging, 2(9), 775–783. doi:10.1038/
s43587-022-00277-x

Centers for Disease, C. Prevention (2010). Vital signs: Current cigarette 
smoking among adults aged >or=18 years—United States, 2009. 
MMWR Morbidity and Mortality Weekly Report, 59(35), 1135–
1140. https://www.ncbi.nlm.nih.gov/pubmed/20829747

Chiang, J. J., Turiano, N. A., Mroczek, D. K., & Miller, G. E. (2018). Af-
fective reactivity to daily stress and 20-year mortality risk in adults 
with chronic illness: Findings from the National Study of Daily 
Experiences. Health Psychology, 37(2), 170–178. doi:10.1037/
hea0000567

Chumbley, J., Xu, W., Potente, C., Harris, K. M., & Shanahan, M. 
(2021). A Bayesian approach to comparing common models of life-
course epidemiology. International Journal of Epidemiology, 50(5), 
1660–1670. doi:10.1093/ije/dyab073

Cohen, A. A., Legault, V., & Fulop, T. (2020). What if there’s no such 
thing as “aging?” Mechanisms of Ageing and Development, 192, 
111344. doi:10.1016/j.mad.2020.111344

Crimmins, E. M., Thyagarajan, B., Kim, J. K., Weir, D., & Faul, J. 
(2021). Quest for a summary measure of biological age: The Health 
and Retirement Study. Geroscience, 43(1), 395–408. doi:10.1007/
s11357-021-00325-1

Davies, G., Marioni, R. E., Liewald, D. C., Hill, W. D., Hagenaars, S. 
P., Harris, S. E., ... Deary, I. J. (2016). Genome-wide association 
study of cognitive functions and educational attainment in UK 
Biobank (N = 112 151). Molecular Psychiatry, 21(6), 758–767. 
doi:10.1038/mp.2016.45

Degano, I. R., Marrugat, J., Grau, M., Salvador-Gonzalez, B., Ramos, 
R., Zamora, A., Marti, R., & Elosua, R. (2017). The association be-
tween education and cardiovascular disease incidence is mediated 
by hypertension, diabetes, and body mass index. Scientific Reports, 
7(1), 12370. doi:10.1038/s41598-017-10775-3

Ding, X., Barban, N., & Mills, M. C (2019). Educational attainment 
and allostatic load in later life: Evidence using genetic markers. Pre-
ventive Medicine, 129, 105866. doi:10.1016/j.ypmed.2019.105866

Dudbridge, F. (2013). Power and predictive accuracy of polygenic 
risk scores. PLoS Genetics, 9(3), e1003348. doi:10.1371/journal.
pgen.1003348

Dupre, M. E. (2007). Educational differences in age-related patterns of 
disease: Reconsidering the cumulative disadvantage and age-as-lev-
eler hypotheses. Journal of Health and Social Behavior, 48(1), 1–
15. doi:10.1177/002214650704800101

https://doi.org/10.1093/ije/dyr029
https://doi.org/10.1038/s41598-021-89020-x
https://doi.org/10.1038/s41598-021-89020-x
https://doi.org/10.7554/eLife.73420
https://doi.org/10.1016/j.socscimed.2014.08.001
https://doi.org/10.1016/j.socscimed.2014.08.001
https://doi.org/10.1038/s43587-022-00277-x
https://doi.org/10.1038/s43587-022-00277-x
https://www.ncbi.nlm.nih.gov/pubmed/20829747
https://doi.org/10.1037/hea0000567
https://doi.org/10.1037/hea0000567
https://doi.org/10.1093/ije/dyab073
https://doi.org/10.1016/j.mad.2020.111344
https://doi.org/10.1007/s11357-021-00325-1
https://doi.org/10.1007/s11357-021-00325-1
https://doi.org/10.1038/mp.2016.45
https://doi.org/10.1038/s41598-017-10775-3
https://doi.org/10.1016/j.ypmed.2019.105866
https://doi.org/10.1371/journal.pgen.1003348
https://doi.org/10.1371/journal.pgen.1003348
https://doi.org/10.1177/002214650704800101


1384 Journals of Gerontology: SOCIAL SCIENCES, 2023, Vol. 78, No. 8

Elliott, M. L., Caspi, A., Houts, R. M., Ambler, A., Broadbent, J. M., 
Hancox, R. J., & Moffitt, T. E. (2021). Disparities in the pace of 
biological aging among midlife adults of the same chronological 
age have implications for future frailty risk and policy. Nat Aging, 
1(3), 295–308. doi:10.1038/s43587-021-00044-4

Euesden, J., Lewis, C. M., & O’Reilly, P. F. (2015). PRSice: Poly-
genic Risk Score software. Bioinformatics, 31(9), 1466–1468. 
doi:10.1093/bioinformatics/btu848

Graf, G. H., Crowe, C. L., Kothari, M., Kwon, D., Manly, J. J., Turney, 
I. C., Valeri, L., & Belsky, D. W. (2022). Testing black-white dispar-
ities in biological aging among older adults in the United States: 
Analysis of DNA-methylation and blood-chemistry methods. 
American Journal of Epidemiology, 191(4), 613–625. doi:10.1093/
aje/kwab281

Hahn, R. A., & Truman, B. I (2015). Education improves public health 
and promotes health equity. International Journal of Health Ser-
vices, 45(4), 657–678. doi:10.1177/0020731415585986

Haneuse, S., VanderWeele, T. J., & Arterburn, D. (2019). Using the 
E-value to assess the potential effect of unmeasured confounding 
in observational studies. Journal of the American Medical Associa-
tion, 321(6), 602–603. doi:10.1001/jama.2018.21554

Hannum, G., Guinney, J., Zhao, L., Zhang, L., Hughes, G., Sadda, S., 
Klotzle, B., Bibikova, M., Fan, J. B., Gao, Y., Deconde, R., Chen, 
M., Rajapakse, I., Friend, S., Ideker, T., & Zhang, K. (2013). Ge-
nome-wide methylation profiles reveal quantitative views of hu-
man aging rates. Molecular Cell, 49(2), 359–367. doi:10.1016/j.
molcel.2012.10.016

Horvath, S. (2013). DNA methylation age of human tissues and cell 
types. Genome Biology, 14(10), R115. doi:10.1186/gb-2013-14-
10-r115

Horvath, S., & Raj, K. (2018). DNA methylation-based biomarkers 
and the epigenetic clock theory of ageing. Nature Reviews Genet-
ics, 19(6), 371–384. doi:10.1038/s41576-018-0004-3

Huibregtse, B. M., Newell-Stamper, B. L., Domingue, B. W., & Board-
man, J. D. (2021). Genes related to education predict frailty among 
older adults in the United States. The Journals of Gerontology, Se-
ries B: Psychological Sciences and Social Sciences, 76(1), 173–183. 
doi:10.1093/geronb/gbz092

Jokela, M., Batty, G. D., Nyberg, S. T., Virtanen, M., Nabi, H., Singh-Ma-
noux, A., & Kivimaki, M. (2013). Personality and all-cause mortal-
ity: Individual-participant meta-analysis of 3,947 deaths in 76,150 
adults. American Journal of Epidemiology, 178(5), 667–675. 
doi:10.1093/aje/kwt170

Kankaanpaa, A., Tolvanen, A., Heikkinen, A., Kaprio, J., Ollikainen, 
M., & Sillanpaa, E. (2022). The role of adolescent lifestyle habits 
in biological aging: A prospective twin study. Elife, 11, e80729. 
doi:10.7554/eLife.80729

Kennedy, B. K., Berger, S. L., Brunet, A., Campisi, J., Cuervo, A. M., 
Epel, E. S., Franceschi, C., Lithgow, G. J., Morimoto, R. I., Pessin, 
J. E., Rando, T. A., Richardson, A., Schadt, E. E., Wyss-Coray, T., 
& Sierra, F. (2014). Geroscience: Linking aging to chronic disease. 
Cell, 159(4), 709–713. doi:10.1016/j.cell.2014.10.039

Kirkwood, T. B. (2005). Understanding the odd science of aging. Cell, 
120(4), 437–447. doi:10.1016/j.cell.2005.01.027

Kubota, Y., Heiss, G., MacLehose, R. F., Roetker, N. S., & Folsom, A. R. 
(2017). Association of educational attainment with lifetime risk of 
cardiovascular disease: The Atherosclerosis Risk in Communities 
Study. JAMA Internal Medicine, 177(8), 1165–1172. doi:10.1001/
jamainternmed.2017.1877

Lee, J. J., Wedow, R., Okbay, A., Kong, E., Maghzian, O., Zacher, M., 
Nguyen-Viet, T. A., Bowers, P., Sidorenko, J., Karlsson Linner, 
R., Fontana, M. A., Kundu, T., Lee, C., Li, H., Li, R., Royer, R., 
Timshel, P. N., Walters, R. K., Willoughby, E. A., … & Cesarini, 
D. (2018). Gene discovery and polygenic prediction from a ge-
nome-wide association study of educational attainment in 1.1 mil-
lion individuals. Nature Genetics, 50(8), 1112–1121. doi:10.1038/
s41588-018-0147-3

Levine, M. E. (2020). Assessment of epigenetic clocks as biomarkers 
of aging in basic and population research. The Journals of Geron-

tology, Series A: Biological Sciences and Medical Sciences, 75(3), 
463–465. doi:10.1093/gerona/glaa021

Levine, M. E., Lu, A. T., Quach, A., Chen, B. H., Assimes, T. L., Bandi-
nelli, S., Hou, L., Baccarelli, A. A., Stewart, J. D., Li, Y., Whitsel, E. 
A., Wilson, J. G., Reiner, A. P., Aviv, A., Lohman, K., Liu, Y., Fer-
rucci, L., & Horvath, S. (2018). An epigenetic biomarker of aging 
for lifespan and healthspan. Aging (Albany NY), 10(4), 573–591. 
doi:10.18632/aging.101414

Lewis, C. M., & Vassos, E. (2020). Polygenic risk scores: From re-
search tools to clinical instruments. Genome Medicine, 12(1), 44. 
doi:10.1186/s13073-020-00742-5

Lovden, M., Fratiglioni, L., Glymour, M. M., Lindenberger, U., & Tuck-
er-Drob, E. M. (2020). Education and cognitive functioning across 
the life span. Psychological Science in the Public Interest, 21(1), 
6–41. doi:10.1177/1529100620920576

Lu, A. T., Quach, A., Wilson, J. G., Reiner, A. P., Aviv, A., Raj, K., Hou, 
L., Baccarelli, A. A., Li, Y., Stewart, J. D., Whitsel, E. A., Assimes, 
T. L., Ferrucci, L., & Horvath, S. (2019). DNA methylation Grim-
Age strongly predicts lifespan and healthspan. Aging (Albany NY), 
11(2), 303–327. doi:10.18632/aging.101684

Lynn, P., & Borkowska, M. (2018). Some indicators of sample rep-
resentativeness and attrition bias for BHPS and Understanding 
Society. Colchester. https://www.understandingsociety.ac.uk/sites/
default/files/downloads/working-papers/2018-01.pdf

Marioni, R. E., Ritchie, S. J., Joshi, P. K., Hagenaars, S. P., Okbay, A., 
Fischer, K., Adams, M. J., Hill, W. D., Davies, G., Social Science Ge-
netic Association, C., Nagy, R., Amador, C., Lall, K., Metspalu, A., 
Liewald, D. C., Campbell, A., Wilson, J. F., Hayward, C., Esko, T., 
… & Deary, I. J. (2016). Genetic variants linked to education pre-
dict longevity. Proceedings of the National Academy of Sciences of 
the United States of America, 113(47), 13366–13371. doi:10.1073/
pnas.1605334113

Michaud, P. C., Kapteyn, A., Smith, J. P., & van Soest, A. (2011). Tem-
porary and permanent unit non-response in follow-up interviews 
of the Health and Retirement Study. Longitudinal and Life Course 
Studies: International Journal, 2(2), 145–169. doi:10.14301/llcs.
v2i2.114

Oblak, L., van der Zaag, J., Higgins-Chen, A. T., Levine, M. E., & Boks, 
M. P. (2021). A systematic review of biological, social and environ-
mental factors associated with epigenetic clock acceleration. Age-
ing Research Reviews, 69, 101348. doi:10.1016/j.arr.2021.101348

Pingault, J. B., Allegrini, A. G., Odigie, T., Frach, L., Baldwin, J. R., 
Rijsdijk, F., & Dudbridge, F. (2022). Research review: How to in-
terpret associations between polygenic scores, environmental risks, 
and phenotypes. Journal of Child Psychology and Psychiatry, and 
Allied Disciplines, 63(10), 1125–1139. doi:10.1111/jcpp.13607

Pingault, J. B., Rijsdijk, F., Schoeler, T., Choi, S. W., Selzam, S., Krapohl, 
E., & Dudbridge, F. (2021). Genetic sensitivity analysis: Adjusting 
for genetic confounding in epidemiological associations. PLoS Ge-
netics, 17(6), e1009590. doi:10.1371/journal.pgen.1009590

Raffington, L., & Belsky, D. W. (2022). Integrating DNA methylation 
measures of biological aging into social determinants of health 
research. Current Environment Health Reports, 9(2), 196–210. 
doi:10.1007/s40572-022-00338-8

Reed, R. G., Carroll, J. E., Marsland, A. L., & Manuck, S. B. (2022). DNA 
methylation-based measures of biological aging and cognitive de-
cline over 16-years: Preliminary longitudinal findings in midlife. Ag-
ing (Albany NY), 14(23), 9423–9444. doi:10.18632/aging.204376

Rutledge, J., Oh, H., & Wyss-Coray, T. (2022). Measuring biological 
age using omics data. Nature Reviews Genetics, 23(12), 715–727. 
doi:10.1038/s41576-022-00511-7

Sharp, E. S., & Gatz, M. (2011). Relationship between education 
and dementia: An updated systematic review. Alzheimer Disease 
and Associated Disorders, 25(4), 289–304. doi:10.1097/WAD.
0b013e318211c83c

Shostak, S., Freese, J., Link, B. G., & Phelan, J. C (2009). The pol-
itics of the gene: Social status and beliefs about genetics for in-
dividual outcomes. Social Psychology Quarterly, 72(1), 77–93. 
doi:10.1177/019027250907200107

https://doi.org/10.1038/s43587-021-00044-4
https://doi.org/10.1093/bioinformatics/btu848
https://doi.org/10.1093/aje/kwab281
https://doi.org/10.1093/aje/kwab281
https://doi.org/10.1177/0020731415585986
https://doi.org/10.1001/jama.2018.21554
https://doi.org/10.1016/j.molcel.2012.10.016
https://doi.org/10.1016/j.molcel.2012.10.016
https://doi.org/10.1186/gb-2013-14-10-r115
https://doi.org/10.1186/gb-2013-14-10-r115
https://doi.org/10.1038/s41576-018-0004-3
https://doi.org/10.1093/geronb/gbz092
https://doi.org/10.1093/aje/kwt170
https://doi.org/10.7554/eLife.80729
https://doi.org/10.1016/j.cell.2014.10.039
https://doi.org/10.1016/j.cell.2005.01.027
https://doi.org/10.1001/jamainternmed.2017.1877
https://doi.org/10.1001/jamainternmed.2017.1877
https://doi.org/10.1038/s41588-018-0147-3
https://doi.org/10.1038/s41588-018-0147-3
https://doi.org/10.1093/gerona/glaa021
https://doi.org/10.18632/aging.101414
https://doi.org/10.1186/s13073-020-00742-5
https://doi.org/10.1177/1529100620920576
https://doi.org/10.18632/aging.101684
https://www.understandingsociety.ac.uk/sites/default/files/downloads/working-papers/2018-01.pdf
https://www.understandingsociety.ac.uk/sites/default/files/downloads/working-papers/2018-01.pdf
https://doi.org/10.1073/pnas.1605334113
https://doi.org/10.1073/pnas.1605334113
https://doi.org/10.14301/llcs.v2i2.114
https://doi.org/10.14301/llcs.v2i2.114
https://doi.org/10.1016/j.arr.2021.101348
https://doi.org/10.1111/jcpp.13607
https://doi.org/10.1371/journal.pgen.1009590
https://doi.org/10.1007/s40572-022-00338-8
https://doi.org/10.18632/aging.204376
https://doi.org/10.1038/s41576-022-00511-7
https://doi.org/10.1097/WAD.0b013e318211c83c
https://doi.org/10.1097/WAD.0b013e318211c83c
https://doi.org/10.1177/019027250907200107


Journals of Gerontology: SOCIAL SCIENCES, 2023, Vol. 78, No. 8 1385

Shuey, K. M., & Willson, A. E. (2008). Cumulative dis-
advantage and Black–White disparities in life-course 
health trajectories. Research on Aging, 30(2), 200–225. 
doi:10.1177/0164027507311151

Slutske, W. S., Caspi, A., Moffitt, T. E., & Poulton, R. (2005). Person-
ality and problem gambling: A prospective study of a birth cohort 
of young adults. Archives of General Psychiatry, 62(7), 769–775. 
doi:10.1001/archpsyc.62.7.769

Smith, B. H., Campbell, A., Linksted, P., Fitzpatrick, B., Jackson, 
C., Kerr, S. M., Deary, I. J., Macintyre, D. J., Campbell, H., Mc-
Gilchrist, M., Hocking, L. J., Wisely, L., Ford, I., Lindsay, R. S., 
Morton, R., Palmer, C. N., Dominiczak, A. F., Porteous, D. J., & 
Morris, A. D. (2013). Cohort profile: Generation Scotland: Scot-
tish Family Health Study (GS:SFHS): The study, its participants 
and their potential for genetic research on health and illness. Inter-
national Journal of Epidemiology, 42(3), 689–700. doi:10.1093/
ije/dys084

Sugden, K., Hannon, E. J., Arseneault, L., Belsky, D. W., Broadbent, J. 
M., Corcoran, D. L., Hancox, R. J., Houts, R. M., Moffitt, T. E., 
Poulton, R., Prinz, J. A., Thomson, W. M., Williams, B. S., Wong, 
C. C. Y., Mill, J., & Caspi, A. (2019). Establishing a generalized 
polyepigenetic biomarker for tobacco smoking. Translational Psy-
chiatry, 9(1), 92. doi:10.1038/s41398-019-0430-9

Tyrrell, J., Zheng, J., Beaumont, R., Hinton, K., Richardson, T. G., 
Wood, A. R., & Tilling, K. (2021). Genetic predictors of participa-
tion in optional components of UK Biobank. Nature Communica-
tions, 12(1), 886. doi:10.1038/s41467-021-21073-y

VanderWeele, T. J., & Ding, P. (2017). Sensitivity analysis in observa-
tional research: Introducing the E-value. Annals of Internal Medi-
cine, 167(4), 268–274. doi:10.7326/M16-2607

von Hippel, P. T. (2015). The heterogeneity statistic I(2) can be biased 
in small meta-analyses. BMC Medical Research Methodology, 15, 
35. doi:10.1186/s12874-015-0024-z

Wang, B., Baldwin, J. R., Schoeler, T., Cheesman, R., Barkhuizen, W., Dud-
bridge, F., Bann, D., Morris, T. T., & Pingault, J. B. (2021). Robust genetic 
nurture effects on education: A systematic review and meta-analysis 
based on 38,654 families across 8 cohorts. American Journal of Human 
Genetics, 108(9), 1780–1791. doi:10.1016/j.ajhg.2021.07.010

Wedow, R., Zacher, M., Huibregtse, B. M., Harris, K. M., Domingue, 
B. W., & Boardman, J. D. (2018). Education, smoking, and cohort 
change: Forwarding a multidimensional theory of the environmen-
tal moderation of genetic effects. American Sociological Review, 
83(4), 802–832. doi:10.1177/0003122418785368

Xu, W., Tan, L., Wang, H. F., Jiang, T., Tan, M. S., Tan, L., Zhao, Q. F., Li, 
J. Q., Wang, J., & Yu, J. T. (2015). Meta-analysis of modifiable risk 
factors for Alzheimer’s disease. Journal of Neurology Neurosurgery 
and Psychiatry, 86(12), 1299–1306. doi:10.1136/jnnp-2015-310548

Zajacova, A., & Lawrence, E. M. (2018). The relationship between 
education and health: Reducing disparities through a contex-
tual approach. Annual Review of Public Health, 39, 273–289. 
doi:10.1146/annurev-publhealth-031816-044628

Zimmerman, E., & Woolf, S. H. (2014). Understanding the relationship 
between education and health. NAM Perspectives. Discussion Pa-
per, National Academy of Medicine. doi:10.31478/201406a

https://doi.org/10.1177/0164027507311151
https://doi.org/10.1001/archpsyc.62.7.769
https://doi.org/10.1093/ije/dys084
https://doi.org/10.1093/ije/dys084
https://doi.org/10.1038/s41398-019-0430-9
https://doi.org/10.1038/s41467-021-21073-y
https://doi.org/10.7326/M16-2607
https://doi.org/10.1186/s12874-015-0024-z
https://doi.org/10.1016/j.ajhg.2021.07.010
https://doi.org/10.1177/0003122418785368
https://doi.org/10.1136/jnnp-2015-310548
https://doi.org/10.1146/annurev-publhealth-031816-044628
https://doi.org/10.31478/201406a

