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Abstract

Background

Cannabis legalization and use are outpacing our understanding of
its long-term effects on brain and behavior, which is fundamental
for effective policy and health practices. Existing studies are limited
by small samples, cross-sectional measures, failure to separate long-
term from recreational use, and inadequate control for other
substance use. Here, we address these limitations by determining
the structural brain integrity of long-term cannabis users in the
Dunedin Study, a longitudinal investigation of a population-
representative birth cohort followed to midlife.

Methods

We leveraged prospective measures of cannabis, alcohol, tobacco,
and other illicit drug use, in addition to structural neuroimaging in
875 Study members at age 45 to test for differences in both global
and regional grey and white matter integrity between long-term
cannabis users and lifelong non-users. We additionally tested for
dose-response associations between continuous measures of
cannabis use and brain structure, including careful adjustments for
use of other substances.

Results

Long-term cannabis users had a thinner cortex, smaller subcortical
grey matter volumes, and higher machine-learning-predicted brain
age than non-users. However, these differences in structural brain
integrity were explained by the propensity of long-term cannabis
users to engage in polysubstance use, especially with alcohol and
tobacco.

Conclusions

These findings suggest that diminished midlife structural brain
integrity in long-term cannabis users reflects a broader pattern of
polysubstance use, underlining the importance of understanding
comorbid substance use in efforts to curb the negative effects of
cannabis on brain and behavior as well as establish more effective
policy and health practices.

Keywords
Cannabis; Structural MRI; Cognitive reserve; Polysubstance use; Brain
age; Birth cohort

Introduction
Increasing legalization of cannabis has been accompanied by a
decrease in perceived risks of use (1), despite emerging evidence of
numerous adverse outcomes in long-term users, including impaired
cognitive function (2, 3, 4, 5, 6, 7). Neuroimaging studies of cannabis
users have further revealed structural alterations in both grey and
white matter supporting the very cognitive functions found to be
impaired in chronic users (8, 9, 10). Most studies of structural brain
integrity in cannabis users have reported on grey matter, with the
most consistent differences found in cannabinoid receptor-dense
regions including the hippocampus and amygdala (1,9,10).
Specifically, meta-analyses have found smaller hippocampal volumes
in cannabis users (11,12), with findings in other regions more mixed.
Results from white matter studies are also mixed, with evidence for
associations between earlier onset of use and reduced white matter
microstructural integrity most consistently emerging (8,13).
However, several studies have found no evidence of grey or white
matter alterations in cannabis users (13, 14, 15, 16, 17), and
additional studies have suggested that findings may be attributable
to confounding influences of polysubstance use (18) or
predispositional factors (19).

The absence of clear evidence for structural brain alterations in
long-term cannabis users reflects, in part, limitations of existing
studies that must be addressed to better understand the nature of
adverse outcomes associated with long-term drug use and inform
public health policy and practice. First, as with the broader clinical
neuroimaging literature, heterogenous study designs and small
unrepresentative samples limit power to detect associations beyond
a few regions of interest or generalize to other populations (18).
Additionally, existing studies face limitations common to the study
of cannabis users, namely accurate usage quantification and reliance
on cross-sectional retrospective usage reports (20). Reported usage
levels vary widely across studies, from as little as one to >1000
lifetime uses (11,13). Further, cannabis users often engage in
polysubstance use, with one population-based study demonstrating
that rates of alcohol, tobacco, and other illicit drug use among
cannabis users were at least two, four, and five times that of non-
users, respectively (21). As such, disentangling effects of cannabis
from other substances is challenging, and more research is needed
to determine how the brains of cannabis users compare to those of
other substance users (4). Finally, existing findings are largely based
on studies of adolescents and young adults (22), some of whom used
cannabis very infrequently (11), leaving open questions about the
structural brain integrity of long-term cannabis users in midlife or
older adulthood. As the number of older adults using cannabis
reaches historical highs (23), it is increasingly important to identify
how long-term use contributes to diminished cognitive reserves
(24,25) and increased risk for aging-related diseases such as
Alzheimer’s disease and related dementias (ADRD) (26,27).

We sought to fill these gaps by evaluating the midlife structural
brain integrity of long-term cannabis users in the Dunedin Study,
which offers a rich longitudinal dataset of health and behavioral
measures in a population-representative birth cohort of 1,000 people
followed to age 45, when neuroimaging data were first collected. To
our knowledge, this neuroimaging dataset is amongst the largest of
long-term cannabis users, and the only larger dataset with detailed
prospective substance use measures. With this dataset, we leveraged
repeated prospective cannabis use assessments over nearly 30 years
to compare long-term cannabis users to lifelong non-users and to
test whether associations with brain structure depend on usage level
(i.e., are dose-dependent). Detailed prospective alcohol and tobacco
use measures allowed us to test whether structural brain alterations
in long-term cannabis users are specific to their cannabis use, or are
potentially explained by the fact that they also use other substances
heavily. Additionally, these measures allowed us to compare the
magnitude of alterations in alcohol and tobacco users to those of
cannabis users. Finally, the availability of high-quality brain
structure measures at age 45 in a large number of Study members
with documented drug uses histories (N=860 for grey matter; N=853
for white matter) afforded statistical power to conduct unbiased
exploratory whole-brain analyses to ascertain the breadth of
associations between long-term cannabis use and midlife structural
brain integrity.

Specifically, we evaluated long-term cannabis users on
comprehensive measures of global and regional grey matter (i.e.,
cortical thickness, surface area, subcortical volume) and white matter
(i.e., microstructural integrity as indexed by fractional anisotropy,
and volume of hyperintensities) in midlife. These MRI measures not
only have demonstrated alterations in regular cannabis users (1) but
also represent promising midlife biomarkers of accelerated
cognitive decline and risk for ADRD (28). In addition to grey and
white matter, we examined links with “brain age,” a machine-
learning-based estimate derived from multiple MRI measures (29).
The difference between brain age and chronological age offers an
approximation of age-related deterioration in the brain using cross-
sectional data (30). Individuals with the same chronological age but
older brain age have accelerated cognitive decline (29), increased risk
for ADRD (31), and higher mortality (32). Collectively, these design
features presented a unique opportunity to establish a
comprehensive portrait of midlife structural brain integrity in long-
term cannabis users, which may be important in shaping their
trajectories of healthy and unhealthy aging.

Methods
A brief description of the samples and measures is reported below. A
full description is provided in Supplemental Methods.

Study Design and Participants

Participants were members of the Dunedin Study, a population-
representative birth cohort (N=1037) born between April 1972 and
March 1973 in Dunedin, New Zealand (NZ). Assessments were
conducted at birth and every few years, most recently at age 45, when
neuroimaging was additionally conducted in 875 Study members.
The relevant ethics committees approved the Study, and all Study
members provided written informed consent.

Long-Term Cannabis Users and Three Comparison Groups

At each of the six adult Study waves (ages 18, 21, 26, 32, 38, and 45),
Study members self-reported the number of days (0-365) they used
cannabis, the number of tobacco cigarettes smoked per day, and the
number of days they used alcohol in the past year. At the four study
waves from age 26-45, Study members additionally reported the
number of days they used other drugs in the past year. This was
used to assess past-year drug dependencies and identify long-term
cannabis users and three comparison groups. Long-term cannabis
users (n=82; 65% men) used cannabis at least weekly in the past year
at age 45, or were dependent on cannabis at age 45, and also used at
least weekly during one or more previous waves. Lifelong cannabis
non-users (n=192; 41% men) never used cannabis, had no substance-
use disorder diagnoses at any assessment, and never used tobacco
daily. Long-term tobacco users (n=70; 40% men) smoked tobacco daily
in the past year at age 45 and at one or more previous waves. Long-
term alcohol users (n=56; 55% men) were at least past-year weekly
drinkers at age 45 and had an alcohol dependence diagnosis at two
or more waves. Long-term tobacco and alcohol users were mostly
free from cannabis use at age 45 and had no history of cannabis
dependence or weekly use. All comparison groups are mutually
exclusive to long-term cannabis users but not each other (Figure S1).

Persistence of Cannabis Use

We created two continuous cannabis use measures. Persistence of
cannabis dependence comprised Study members who (i) never used
cannabis (n=248), (ii) used but were never diagnosed (n=468), and
those who were diagnosed at (iii) one wave (n=78), (iv) two waves
(n=34), (v) three waves (n=30), and (vi) four or more waves (n=16).
Persistence of regular cannabis use (≥4 times/week) comprised Study
members who (i) never used cannabis (n=248), (ii) used but never
regularly (n=486), and those who used regularly at (iii) one wave
(n=49), (iv) two waves (n=31), (v) three waves (n=31), or (vi) four or
more waves (n=29).

Persistence of Alcohol and Tobacco Use

Continuous alcohol and tobacco dependence measures mirrored the
cannabis measure. Persistence of alcohol/tobacco dependence comprised
Study members who (i) never used (n=47/427), (ii) used but were
never diagnosed (n=504/123), and those who were diagnosed at (iii)
one wave (n=167/99), (iv) two waves (n=79/81), (v) three waves
(n=45/59), or (vi) four or more waves (n=30/85).

Midlife Brain Structure

Grey matter integrity was estimated using cortical thickness (CT)
and cortical surface area (SA) measures extracted from the whole
brain and the 360 regions in the HCP-MPP1.0 atlas (33).
Additionally, total brain volume (TBV) and grey matter volumes
(GMV) for 10 subcortical structures were extracted using FreeSurfer’s
"aseg" parcellation.

White matter integrity was estimated using fractional anisotropy
(FA) measures averaged across the full white matter skeleton and
within tract-wise regions of interest from the intersection of the
skeleton and the 27 regions in the Johns Hopkins University (JHU)
white matter atlas (34).

Total volume of white matter hyperintensities (WMH) was calculated
with UBO Detector (35).

Finally, the brain age gap estimate (brainAGE), or difference between
chronological age predicted from MRI measures of brain structure
and actual chronological age, was estimated using a pre-trained
publicly available algorithm (29).

Covariates

Long-term cannabis users often regularly use other licit and illicit
substances (36). Thus, we included covariates for persistent use of
other substances in our models. Persistent alcohol and tobacco
dependence were measured as described above. Additionally,
persistent illicit drug use was defined as a diagnosis of dependence
on illicit drugs (other than cannabis) at two or more waves from ages
26-45 (Supplemental Methods).

Statistical Analyses

To test whether long-term cannabis users exhibit global alterations
in midlife brain structure, we used t-tests comparing long-term
cannabis users to each comparison group on 6 sex-adjusted global
brain structure measures: average CT, total SA, TBV, average FA,
WMH volume, and brainAGE. To test for dose-response
associations, we used ordinary least squares (OLS) regression with
each of the 2 continuous cannabis use measures. To compare the
effect sizes of the associations between persistence of cannabis use
and brain structure to those of persistence of alcohol and tobacco
use, we used OLS regression with these respective measures. All
dose-response analyses were adjusted for sex and subsequently
additionally adjusted for persistent dependence on other substances
(cannabis, alcohol, tobacco, and illicit drugs, as appropriate). For
each model, we corrected for multiple comparisons across the 6 tests
performed for each brain measure using a false discovery rate (FDR)
procedure (37). We report standardized beta coefficients.

We further probed regional subdivisions of 4 of the 6 global
measures to examine whether associations with global measures
may be driven by localized patterns of structural differences.
Specifically, we conducted all group comparisons and dose-response
analyses with CT and SA in the 360 regions comprising the HCP-
MPP1.0 atlas(33), GMV in the 10 subcortical volumes, and FA in the
27 tracts as described above. Given the exploratory nature of our
analyses, only results with p <.05 were considered statistically
significant. Analyses were conducted in R version 3.6.0 (38), pre-
registered
(https://sites.duke.edu/moffittcaspiprojects/files/2021/07/Knodt_2020
a.pdf), and checked for reproducibility by an independent analyst.

Secondary Analyses

We conducted additional pre-registered analyses comparing long-
term cannabis users to midlife recreational cannabis users and
cannabis quitters, as well as dose-response analyses adjusting for
childhood risk factors to assess any role that antecedents to
substance-misuse might have in our results (Supplemental
Methods). At the request of a reviewer, we additionally repeated the
global dose-response analyses for each sex separately.

Results

Cohort Characteristics

Table 1 shows substance use patterns for the 875 Study members
who underwent neuroimaging at age 45, along with basic
demographic information and childhood risk factors for substance
misuse. While the long-term alcohol and tobacco groups were free
from regular cannabis use and cannabis dependence by design,
long-term cannabis users had an elevated incidence of dependence
on tobacco (23.5%), alcohol (20.7%), and other illicit drugs (15.9%) at
age 45.

Table 1. Sociodemographic characteristics and substance use involvement for
the full imaging cohort as well as long-term cannabis users and three
comparison groups within the imaging cohort. (Childhood variables are
described in the Supplemental Methods.)

Male Sex, % (N) 50.4

(441)

64.6 (53) 41.1 (79) 40.0 (28) 55.4 (31)

Childhood SES, M

(SD)

3.76

(1.13)

3.40 (1.07) 3.92 (1.17) 3.18 (0.96) 3.79 (1.19)

Childhood Self-

Control Problems,

M (SD)

-0.03

(0.95)

0.36 (1.09) -0.19 (0.88) 0.44 (1.18) 0.00 (0.92)

Childhood IQ, M

(SD)

100.7

(13.9)

98.6 (13.6) 101.4 (13.8) 92.1 (14.0) 98.1 (11.3)

Family History of

Substance

Dependence, M

(SD)

0.15

(0.17)

0.20 (0.20) 0.10 (0.13) 0.19 (0.18) 0.14 (0.15)

Age 45 Depression

Diagnosis, % (N)

16.0

(140)

26.8 (22) 8.3 (16) 14.3 (10) 30.4 (17)

Age 45 Anxiety

Disorder

Diagnosis, % (N)

18.9

(165)

22.0 (18) 15.6 (30) 35.7 (25) 28.6 (16)

Substance Use at

Age 45

Cannabis

Frequencya, M (SD)

25.8

(82.7)

255.6 (116.7) 0 (0) 0.11 (0.5) 0.32 (1.2)

Weekly Cannabis

Use, % (N)

9.7 (85) 98.8 (81) 0 (0) 0 (0) 0 (0)

Regular Cannabis

Useb, % (N)

6.1 (53) 63.4 (52) 0 (0) 0 (0) 0 (0)

Daily Tobacco Use,

% (N)

21.3

(186)

64.6 (53) 0 (0) 100 (70) 17.9 (10)

Weekly Alcohol

Use, % (N)

93.1

(814)

91.5 (75) 91.1 (175) 90 (63) 100 (56)

Cannabis

Dependence, % (N)

2.2 (19) 23.5 (19) 0 (0) 0 (0) 0 (0)

Tobacco

Dependence, % (N)

11.8

(103)

45.1 (37) 0 (0) 52.2 (36) 10.7 (6)

Alcohol

Dependence, % (N)

11.4

(100)

20.7 (17) 0 (0) 8.6 (6) 53.6 (30)

Illicit Drug

Dependence, % (N)

3.2 (28) 15.9 (13) 0 (0) 1.4 (1) 1.8 (1)

Note. a. Number of days used in past year. b. Regular use = 4+ days per week.

Global Brain Structure in Long-Term Cannabis Users

Group comparisons revealed that compared to lifelong cannabis
non-users, Study members who were long-term cannabis users had
significantly thinner average cortex (p =.007) and older brainAGE
(p <.001) (Table 2 and Table S1). Long-term cannabis users did not
differ from non-users on cortical SA, TBV, average FA, or WMH
volume. Long-term cannabis users did not differ from alcohol or
tobacco users on the 6 global brain structure measures.

Table 2. A comparison of long-term cannabis users and three comparison
groups on global brain measures.

Note. Means and statistical tests of group comparisons are adjusted for sex and

standardized on the full sample (M=0, SD=1). Raw (non-standardized) means are given in

Table S1. Group Ns are slightly lower than reported in the methods section and vary

slightly due to missing data and varying QC exclusions for brain measures. Bolded

values indicate an FDR-adjusted (across 6 measures) statistically significant difference

compared with long-term cannabis users. LT=Long-term cannabis users, CT=cortical

thickness, SA=surface area, TBV=total brain volume, FA=fractional anisotropy,

WMH=white matter hyperintensities, BrainAGE=difference between age estimated from

MRI data and actual chronological age, p =FDR-adjusted p-value, p =uncorrected p-

value.

Tests of dose-response associations using the continuous measure
of persistence of cannabis dependence again revealed significant
associations with 2 of the 6 measures: Study members with more
persistent dependence had thinner average cortex (p =.007) and
older brainAGE (p =.010) than those with less persistent
dependence (Figure 1, Table S2). Persistence of regular cannabis use
showed significant associations with 5 of the 6 measures: Study
members who used more persistently had thinner average cortex
(p =.002) and older brainAGE (p =.001), along with smaller total
cortical SA (p =.024), smaller TBV (p =.002), and lower average
white matter FA (p =.024) than those who used less persistently
(Figure 1, Table S2). However, no associations survived adjustment
for persistent dependence on other substances (all p >.2).
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Figure 1. Visual representation of dose-response associations between
persistence of cannabis, alcohol, and tobacco use from age 18-45 and global
measures of midlife brain structure. Standardized betas are shown with
adjustment for sex only, and with adjustment for sex and persistent
dependence on other substances (for each of the three substances, this
included persistence of dependence on the other two substances, as well as
persistent dependence on other illicit drugs). Filled circles indicate p<.05
after FDR correction across 6 measures. CT=cortical thickness, SA=surface
area, TBV=total brain volume, FA=fractional anisotropy, WMH=white matter
hyperintensities, BrainAGE=difference between age estimated from MRI data
and actual chronological age.

Global Brain Structure in Long-Term Alcohol and Tobacco
Users

Persistence of alcohol dependence showed significant associations
with 4 of the 6 measures: Study members with more persistent
alcohol dependence had thinner average cortex (p <.001), smaller
TBV (p =.015), lower average white matter FA (p =.003), and
older brainAGE (p <.001) than those with less persistent
dependence (Figure 1, Table S3). Again, however, no associations
survived adjustment for persistent dependence on other substances
(all p >.07).

Persistence of tobacco dependence showed significant associations
with 5 of the 6 measures: Study members with more persistent
tobacco dependence had thinner average cortex (p <.001), smaller
total cortical SA (p =.007), smaller TBV (p =.007), lower average
white matter FA (p =.006), and older brainAGE (p <.001) than
those with less persistent dependence (Figure 1, Table S3). The
associations between tobacco dependence and CT, SA, and brainAGE
survived adjustment for other substances (all p <.03).

Regional Brain Structure in Long-Term Cannabis Users

Group comparisons revealed that Study members who were long-
term cannabis users had significantly thinner cortex than lifelong
cannabis non-users in 34 of 360 regions (9%) (Figure 2). Long-term
cannabis users did not differ from non-users in regional SA (Figure
S2), subcortical GMV (Table S4), or tract-wise FA (Table S5). Long-
term cannabis users did not differ from long-term alcohol or
tobacco users on any regional brain structure measure.
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Figure 2. A comparison of long-term cannabis users and three comparison
groups on regional cortical thickness. (A) Means for each group, adjusted for
sex and standardized on the full sample (M=0, SD=1; blue regions are thinner
than average and red regions are thicker than average). (B) Differences
between long-term cannabis users and lifelong cannabis non-users (34
regions were significant at pFDR < .05, corrected across 360 regions). No
other group comparisons revealed significant differences in regional cortical
thickness. To allow for a comprehensive examination of effect sizes, maps
have not been thresholded by significance.

Tests of dose-response associations revealed that Study members
with more persistent cannabis dependence had thinner cortex than
those with less persistent dependence in 52 of 360 regions (14%).
Study members who regularly used cannabis more persistently had
thinner cortex than those who used less persistently in 41 regions
(11%; Dice similarity to regions associated with dependence: .67).
However, no associations survived adjustment for persistent
dependence on other substances (Figure 3a). Persistence of cannabis
dependence and persistence of regular cannabis use were not
associated with regional cortical SA. Persistence of regular cannabis
use, but not persistence of cannabis dependence, was associated with
smaller GMV in 4 of 10 subcortical regions: amygdala,
hippocampus, thalamus, and ventral diencephalon. However, no
associations survived adjustment for other substances (Figure S3).
Finally, there were no associations between either continuous
cannabis use measure and tract-wise FA (Figure S4).
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Figure 3. Dose-response associations between persistence of (A) cannabis use
and (B) alcohol and tobacco dependence from age 18-45 and regional
measures of midlife cortical thickness, before and after adjustment for
persistent dependence on other substances. Colors represent standardized
betas, with blues reflecting negative associations with persistence of
substance use. No regions had significant associations with persistence of
cannabis use after adjustment for persistent use of other substances. To allow
for a comprehensive examination of effect sizes, maps have not been
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for a comprehensive examination of effect sizes, maps have not been
thresholded by significance.

Regional Brain Structure in Long-Term Alcohol and Tobacco Users

Study members with more persistent alcohol dependence had
thinner cortex than those with less persistent dependence in 120
regions (33%), but only two survived adjustment for persistent
dependence on other substances (Figure 3b). Study members with
more persistent alcohol dependence did not differ significantly from
those with less persistent dependence in regional cortical SA or
subcortical GMV (Figure S5); however, they had lower FA in 10 of 27
tracts (37%), including 6 that survived adjustment for other
substances (Figure S6).

Study members with more persistent tobacco dependence had
thinner cortex than those with less persistent dependence in 209
regions (58%), including 26 that survived adjustment for other
substances (Figure 3b), along with smaller SA in 56 regions (16%),
including 22 that survived adjustment for other substances (Figure
S7). Study members with more persistent tobacco dependence had
smaller GMV of the ventral diencephalon than those with less
persistent dependence, but this association did not survive
adjustment for other substances (Figure S5). These study members
additionally had lower FA in 8 tracts (30%), including one that
survived adjustment for other substances (Figure S6).

Secondary Analyses

We found no significant differences between long-term cannabis
users and midlife recreational cannabis users or cannabis quitters
(Tables S6-9 and Figure S8).

Secondary dose-response analyses revealed that associations
between persistence of tobacco dependence and global CT and
brainAGE survived additional adjustment for childhood risk factors
(Table S10), as did associations between persistence of alcohol
dependence and regional CT in 2 regions and persistence of alcohol
dependence and regional FA in 6 tracts (Figures S9-10). Dose-
response analyses with global brain measures separated by sex
revealed patterns of associations similar to those in the full sample
(Table S11).

Discussion
With increasing legalization and use of cannabis, it is important to
examine the integrity of brain structures supporting cognitive
functions in long-term users, particularly in midlife when cognitive
reserves begin to shape aging trajectories. However, no clear picture
of the structural brain integrity of long-term cannabis users,
especially in midlife, has yet emerged, and questions remain
regarding the role of polysubstance use in the manifestation of
brain alterations. Here, we leveraged a large, population-
representative birth cohort with comprehensive prospective
substance use measures across five decades into midlife to address
these issues. Our results advance knowledge in three ways.

First, long-term cannabis users had older brain age (i.e., higher brain
age gap estimate) and thinner global and regional cortex than
lifelong non-users. Moreover, tests of dose-response associations
revealed that people who used cannabis more persistently had older
brain age and thinner global and regional cortex than people who
used cannabis less persistently or not at all, and further showed
cannabis-related subcortical differences in areas demonstrating a
high density of cannabinoid receptors, including the amygdala and
hippocampus (10). However, no dose-response association was
robust to adjustment for other substance use, and long-term
cannabis users did not differ from long-term tobacco or alcohol
users in any group comparison. These findings are consistent with
recent large-sample studies (13,16) along with others failing to find
cannabis-specific associations after careful control for alcohol use
(18,39), though fewer cannabis studies have rigorously controlled for
tobacco use. These findings are inconsistent with a recent study of
799 adolescents reporting associations between cannabis use and
thinner prefrontal cortex even after accounting for alcohol and
tobacco use (40). Another study of 89 cannabis-dependent
individuals from the Human Connectome Project found grey and
white matter differences in comparison with non-dependent
individuals matched for alcohol use; however, this study was unable
to also match for tobacco use (41). Our convergent findings across
two analytic approaches for isolating cannabis effects suggest that
inconsistencies reported across previous small, cross-sectional,
and/or heterogeneous samples reflect, at least in part, effects of
other substance use.

Importantly, our dose-response analyses were powered to detect
small effects (Pearson’s r of .095), and group comparisons were
powered to detect small-to-medium-sized differences
(Supplemental Methods). Thus, it is unlikely that our analyses failed
to identify even small alterations in long-term cannabis users.
Further, we have detected cognitive deficits in long-term cannabis
users in this cohort using the strategies employed here (5,6),
suggesting that associations with structural brain integrity are much
smaller or non-existent. For example, we recently reported on
childhood-to-midlife IQ declines in Dunedin Study members that
were unique to long-term cannabis users and, unlike the current
structural brain associations, robust to adjustment for other
substance use (6). Additionally, in this earlier study we specifically
examined the hippocampus as an a priori region of interest, finding
reduced GMV in long-term cannabis users. Notably, this association
did not survive multiple comparison correction in the present
comprehensive set of analyses. Taken together, the findings from
our current and earlier studies suggest that not only could evidence
pointing to unique effects of cannabis on the hippocampus be
explained by the limited scope of prior analyses, but also that future
work including well-powered neuroimaging studies of brain
function and connectivity is needed to identify links between long-
term cannabis use, cognitive impairment, and brain.

Second, we found dose-response associations between persistence of
alcohol and tobacco dependence and structural brain integrity that
were larger and more robust to covariate adjustment than those for
cannabis use. Dose-response associations between persistence of
alcohol dependence and both older brain age and thinner cortex had
larger effect sizes than those for cannabis use. Persistence of alcohol
dependence was additionally marginally associated with global white
matter microstructural integrity, and significantly associated with
regional integrity in 6 white matter tracts even after covariate
adjustment. These findings are consistent with studies reporting
grey matter differences in alcohol but not cannabis users (16,39,42)
as well as studies consistently reporting associations between
alcohol use and widespread alterations in white matter (43, 44, 45).
For tobacco use, we found that continuous measures of use were
more strongly associated with older brain age and thinner cortex
than either cannabis or alcohol, surviving adjustments both for
other substance use as well as childhood risks at the global level.
Although there is evidence for associations between tobacco use and
grey matter (46, 47, 48, 49), our study represents one of few
examining cannabis, alcohol, and tobacco use in the same cohort,
and the dominant effect of tobacco use (rather than cannabis or
alcohol) is relatively novel (16,50). This pattern is also consistent
with a recent UK Biobank study reporting a slightly larger
association between older brain age and tobacco use compared to
alcohol use (51) (cannabis use was not assessed).

Finally, as most studies of cannabis use and the brain have been
conducted in adolescents and young-adults with varying levels of
use, our study shines much-needed light on the associations
between substantial long-term cannabis use and brain structure in
midlife, which has emerged as a critical platform in shaping how
individuals experience aging in later life (52). It is reasonable to
expect that effects of long-term cannabis use on the brain would be
easier to detect in an older sample of persistent users, given
accumulated use over many years. Indeed, we observed clear
patterns of associations between long-term cannabis use and both
thinner cortex and older brain age, but these were entirely explained
by other substance use, suggesting there may not be mechanisms
specific to the endocannabinoid system whereby cannabis use is
associated with lasting alterations in structural brain integrity. Our
comparatively robust finding of older midlife brain age in persistent
tobacco users and, to a lesser extent, persistent alcohol users, is
particularly relevant for ongoing efforts to ameliorate the impact of
age-related disease, given that individuals with older brain age have
increased risk for negative outcomes including accelerated cognitive
decline and ADRD (29,31,32).

Our study has limitations. First, we lack structural brain integrity
measures preceding initiation of cannabis use, as this cohort’s
childhood predates neuroimaging technology. Future longitudinal
neuroimaging studies will be essential for characterizing possible
causal relationships between cannabis use and brain structure and
for ruling out pre-existing alterations, as current evidence for
structural brain alterations in cannabis users preceding onset of use
is mixed (40,53, 54, 55). Second, cannabis use was self-reported as
past-year number of days used, and a more fine-grained measure of
exposure could have increased sensitivity and better captured
patterns of polysubstance use. Additionally, biological assays could
have helped detect under-reporting, though under-reporting for fear
of admitting to illegal drug use is unlikely because Study members,
interviewed repeatedly over a lifetime, have learned to trust the
Study’s confidentiality guarantee (56). Third, high rates of
polysubstance use prevented testing for effects specific to users of
cannabis alone. However, dose-response analyses allowed for
isolation of cannabis effects in more typical cannabis users through
covariate control. Fourth, since all associations between cannabis use
and brain structure were explained by other substance use, we do
not provide an in-depth analysis on further potential confounds.
Future work should seek to better understand relationships between
cannabis use and other factors such as antecedents to substance use,
comorbid illness, and genetic predisposition (19). Fifth, though
secondary analyses revealed no differences between long-term
cannabis users and cannabis quitters, an in-depth analysis of
abstinence was additionally outside the scope of this work, and
future work is needed to better understand the effects of cessation.
Finally, our findings are based on data collected from a single New
Zealand birth cohort who began using cannabis in the 1970s-80s.
While Dunedin Study findings generally match findings from U.S.
samples, concentrations of tetrahydrocannabinol (THC), the primary
psychoactive constituent of cannabis, have risen in recent years (57).
Therefore, if THC underlies associations, then cannabis-related
brain differences reported here might reflect underestimates.

In summary, the detailed prospective substance use measures in our
large dataset allowed for more accurate quantification of drug use
than many existing studies, providing a uniquely comprehensive
picture of the relative strengths of associations between cannabis,
tobacco, and alcohol use with midlife structural brain integrity. This
picture revealed that long-term cannabis users by midlife have
widely-distributed alterations in brain structure including thinner
cortex, lower subcortical GMV, and older brain age. Critically,
however, all midlife structural brain alterations in long-term
cannabis users were explained by their propensity to also use
tobacco and alcohol, which had relatively outsized effects on brain
structure. Thus, our findings collectively suggest that long-term
cannabis use is not likely independently associated with midlife
structural brain integrity. This emphasizes the importance of
carefully accounting for polysubstance use in future studies of
cannabis, brain, and behavior along with identifying convergent
cellular and molecular pathways through which cannabis, alcohol,
and tobacco exert effects on the brain. These findings may further
help inform policy makers and health care providers as they weigh
the impacts of long-term cannabis use relative to other substances,
and seek to identify optimal policies for legalization and strategies
for intervention, including mitigating risk for later-life ADRD.
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