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Objective of the study:  
 
Research has long recognized the changes in cognitive abilities as a normal aging process, 
even with the absence of disease1–3. On the one hand, crystalized abilities that involve past 
learning experiences (such as, verbal comprehension) is usually intact, if not improved 
overtime. On the other hand, fluid cognitive abilities that involve new learning and 
information processing (such as, processing speed, working memory and perceptual 
reasoning) is often worsen as people age. These trajectories can be seen in the young 
adult onward2. More importantly, individuals vary considerably in these trajectories4. 
Understanding individual differences in the aged-related changes in cognitive abilities is 
important as (1) these changes are often associated with changes in day-to-day functioning 
and (2) these changes can provide a basis of comparison between normal aging and 
disease states2,3. Here, capitalizing on high-quality longitudinal data from the DMHDS, we 
will use neuroimaging and predictive modeling approaches to elucidate the extent to which 
the changes in cognitive abilities from the young adult to the middle age are reflected in the 
brain functions and structure.  
 
Substantial efforts in neuroimaging have been paid to study aged-related changes in 
cognitive abilities. However, past studies often suffer from many methodological issues3. 
Fortunately, many of these issues can be addressed by the DMHDS. First, studies usually 
have trouble with selection bias. They often have difficulty recruiting participants who are 
either very healthy (who are usually too busy) or very unhealthy as well as those who have 
limited financial and social support3,5,6. The DMHDS, as a population-based study, does not 
have this issue, given that the DMHDS includes 91% of eligible births who were born in the 
same year in Dunedin, NZ7. Second, many studies are cross-sectional8. Examining age-
related changes in cross-sectional studies can be confounded by the cohort effects (i.e., 
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differences in life experiences due to the year of birth). Moreover, a cross-sectional design 
makes it difficult to estimate within-person changes in cognitive abilities between time 
points since there is only one time point. The DMHDS is a longitudinal study, and thus does 
not suffer from these drawbacks. More specifically, the current DMHDS will allow us to 
examine the longitudinal changes in cognitive abilities between age 38 and 45. Third, many 
longitudinal studies suffer from attrition over time, leaving them with those healthiest, 
wealthiest and most cognitive capable in the cohort9. The DMHDS is an exception where 
94% of the alive participants still took part in the study after a number of assessments from 
prenatal to 45 years old7. Accordingly, the DMHDS provides a unique opportunity to 
address these problematic issues that have prevented the understanding of age-related 
changes in cognitive abilities at the neural level. 
 
Nonetheless, establishing a cognition-brain relationship from neuroimaging data has 
proven to be challenging21 in terms of predictability, reliability, and interpretability. We, 
however, believe that these challenges can be addressed by modern predictive modeling 
approaches to neuroimaging10. First, prediction is an ability to estimate changes in 
cognitive abilities of out-of-sample individuals (i.e., not part of the model-building process) 
based on their brain data11.  Although it is still less common for studies to predict the 
changes in cognitive abilities overtime, many studies have used predictive modelling (also 
known as multivariate/machine learning methods) to draw information across brain indices 
in order to cross-sectionally predict individual differences in cognitive abilities from 
Magnetic Resonance Imaging (MRI)10. These studies often implement MRI data of a single 
modality, such as structural MRI (sMRI), resting-state functional connectivity (rs-FC) and 
task-based functional MRI (tfMRI). sMRI reflects brain volume and morphology26,27. A 
recent large-scale predictive competition12 shows a weak relationship between sMRI and 
cognitive abilities at out-of-sample r around .03-.15. rs-FC reflects intrinsic functional 
connectivity between different brain areas during rest. Studies generally find better 
prediction of cognitive abilities from rs-FC, compared to sMRI, at r around .2 to .413–15. 
tfMRI reflects the changes in BOLD signal induced by events embedded in tasks. Recent 
evidence seems to suggest that tfMRI from certain tasks provide superior prediction for 
cognitive abilities at r above .416. More recently, as opposed to relying on each single 
modality, research has started to combine data across MRI modalities via a machine-
learning technique called stacking. Stacked models, for instance, enhance prediction of 
participants’ age17 and cognitive abilities14,18 over and above predictive models based on 
single modalities. Accordingly, combining multiple modalities via stacking should also 
enhance prediction for the changes in cognitive ability in middle-aged adults, especially if 
each MRI modality provides a separatable, but overlapping, contribution. 
 
Second, reliability, or more specifically test-retest reliability, implies that a brain-based 
predictive model should provide a similar predicted value of the changes in cognitive ability 
across measurement times19.  Researchers often quantify reliability using intraclass 
correlation (ICC), whereas ICC < .40 reflects poor reliability, and ICC > .75 reflects 
excellent reliability20. Similar to prediction, different modalities demonstrate different levels 
of reliability. tfMRI in particular has recently come under intense scrutiny for its low 
reliability21. Elliot and colleagues21 examined ICC of tfMRI at different regions using the 
tasks from the DMHDS and showed poor ICC (<.4) across the regions and tasks. This is 
sharply contradicting the ICC of sMRI, which is at the excellent range (>.75). Fortunately, 
recent studies have started to show that drawing information across brain regions (as 
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opposed to relying on one region at a time) in predictive modelling markedly boosts 
reliability of tfMRI22. More recently, we demonstrated that combining information across 
tasks via stacked modelling can further enhance reliability of tfMRI, resulting in the 
excellent range of ICC18. Accordingly, stacked models should improve not only prediction, 
but also reliability, of the predictive models for the changes in cognitive abilities. 
Fortunately, the DMHDS provides data from 20 participants who were scanned twice at the 
age of 45. This will allow us to examine the reliability for our predictive models via ICC. 
 
Third, interpretability is the extent to which we are able to understand contribution from 
each brain feature in the predictive models23. Ability to interpret models is the key to gain 
neurobiological insights into the changes in cognitive abilities in the middle age. 
Nonetheless, not all predictive modelling algorithms are easy to interpret. Some algorithms, 
especially those that assume linearity and additivity, such as Elastic Net24 and support 
vector machine (SVM) with a linear kernel25, are easy to interpret—researchers can simply 
examine the algorithm’s coefficient (i.e., weight) of each brain feature. It is, however, harder 
to interpret contribution from each brain feature with other algorithms that allow for 
nonlinearity and interaction among features. Some examples of these algorithms are SVM 
with non-linear kernels (e.g., the radial basis function and polynomial kernel26) and 
ensemble learning (e.g., random forest27 and XGBoost28). This problem is known as the 
accuracy-interpretability trade off in machine-learning29. Fortunately, modern machine-
learning has provided model-agnostic techniques to assist with interpreting complex 
models23, such as SHapley Additive exPlanations (SHAP)30, Accumulated Local Effects 
(ALE)31 and feature interaction32. These techniques allow us to interpret and visualise 
feature importance, (non)-linearity and interactivity, respectively. Accordingly, we will apply 
different algorithms (including Elastic Net, SVM and ensemble learning) and select the one 
with the highest predictability and reliability. We will then use appropriate techniques to 
interpret the final models. In keeping with the parieto-frontal integration theory of 
intelligence33 and a recent meta-analysis34, we expect that regions in the frontoparietal as 
well as dorsal attention and default-model networks to contribute highly in predicting the 
age-related changes in cognitive abilities. 
 
Our overarching goal is to enhance our neurobiological understanding of individual 
differences in the age-related changes in cognitive abilities. We will achieve this by 
developing a predictable, reliable, and interpretable model of the individual differences from 
multimodal MRI (sMRI, rs-FC and tfMRI from different tasks). More specifically, our 
predictive models will be tuned to predict changes in cognitive abilities of both crystalized 
and fluid abilities. Similar to our recent predictive modelling work18, we will draw information 
across the whole brain from each MRI modality via different algorithms (Elastic Net24, 
SVM25 and ensemble learning27), and then combine data across modalities via stacking. 
Once we find a predictive and reliable model, we will interpret them using appropriate 
techniques (e.g., relying on coefficients, SHAP30, ALE31 and/or feature interaction32).  
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Data analysis methods:     
 
Target Variables: 
 
Cognitive abilities will be based on (1) cognitive assessment scores during the time of MRI 
scanning (i.e., age 45) and (2) the differences in cognitive assessment scores between age 
38 and 45. The first is for prediction for the current cognitive abilities, while the latter is for 
prediction for the changes in cognitive abilities as a function of age.  
 
In order to capture both crystalized (verbal comprehension) and fluid (processing speed, 
working memory and perceptual reasoning) cognitive abilities, we will use the WAIS-IV35. 
Specifically, we will used (1) information, similarities, and vocabulary scores for verbal 
comprehension, (2) symbol search for processing speed, (3) arithmetic and digit span for 
working memory and (4) block design, matrix reasoning and picture completion for 
perceptual reasoning.  
 
Feature Variables: 
 
Multimodal Neuroimaging: We will use neuroimaging data from task-based functional MRI 
(tfMRI), resting-state fMRI connectivity (rs-FC) and structural MRI (sMRI) as the input 
features for our model:  
 

1) For task-based functional MRI (tfMRI), we will focus on whole-brain parcel-wise 
contrast values. We will parcellate tfMRI into 379 regions using Glasser’s cortical 
atlas36 and Freesurfer’s subcortical segmentation37. We will then compute averaged 
general-linear model contrasts between experimental vs. control conditions for each 
tfMRI task as different modalities. For the emotion task, we will focus on the “Faces 
> Shapes” contrast21. For the reward task, we will focus on the “Gain Anticipation > 
Neutral Anticipation” contrast21. For the executive function Stroop task, we will focus 
on the “Incongruent > Congruent” contrast21. For the episodic memory task, we will 
focus on the “Encoding > Distractor” contrast21. 
 

2) For resting-state fMRI connectivity (rs-FC), we will quantify connectivity strength 
during rs-FC using a seed-based, correlational approach on parcellated regions. 
Similar to tfMRI, we will parcellate tfMRI into 379 regions using Glasser’s cortical 
atlas36 and Freesurfer’s subcortical segmentation37. We will compute rs-FC 
connectivity-strength indices using Fisher r to z transformation. 
 

3) For structural MRI (sMRI), we will separate sMRI data into four different modalities: 
cortical thickness, cortical surface area, subcortical volume and total brain volume. 
For cortical thickness and cortical surface area, we used Destrieux parcellation (148 
ROIs)38,39. As for subcortical volume, we used FreeSurfer’s subcortical segmentation 
(19 gray matter ROIs)37. As for total brain volume, we included five features 
calculated by FreeSurfer: estimated intra-cranial volume, total cortical gray matter 
volume, total cortical white matter volume, total subcortical gray matter volume and 
ratio of brain segmentation volume to estimated total intracranial volume. 
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Model Building: 
 
We will use a nested, stacking cross-validation (see Figure 1). In each of the cross-
validation (CV) “outer” loops, one of the eight folds will be held-out. The rest will be further 
split into 60% and 40% for the first- and second-layer training layers, respectively. Within 
the CV “inner” loops, we will separately fit the first-layer data from each modality to predict 
a target variable. Here we will apply a five-fold CV to tune hyperparameters of the models. 
This stage will allow us to create modality-specific models (sMRI, rs-FC and tfMRI from 
each of the three tasks). 
 

Figure 1. Model building pipeline 
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Model Algorithms: 
 
For both first-layer and second-layer algorithms, we will compare the prediction and 
reliability among the following six algorithms from three main supervised-learning families: 

1. Linear regression:  
a. Elastic Net24  

2. Support vector machine (SVM):  
a. SVM with a linear kernel25 
b. SVM with a radial basis function kernel26 
c. SVM with a polynomial kernel26  

3. Ensembles: 
a. random forest27  
b. XGBoost28 

Different algorithms are sensitive to different pattern of the data (e.g., whether the brain 
features have a linear or non-linear relationship with cognitive abilities and whether there 
are interactions among the brain features)29. Thus, evaluating different algorithms will 
ensure that we are able to have the best performing algorithms.  
 
Note some algorithms (e.g., random forest) have an addition advantage (apart from 
prediction and reliability) in dealing with missing values. A recent study in aging 
population17, for instance, used random forest as the second-layer algorithm along with 
imputation, allowing them to keep missing values due to MRI artifact in certain MRI 
modalities in the final model. The ability to keep more data in the model using this so-called 
opportunistic stacking may outweigh potential poorer prediction and/or reliability. 
Model Prediction: 
 
We will evaluate models’ prediction using the eight held-out folds across the outer CV loops 
via four measures40: 

1. Pearson’s r is defined as 
𝑐𝑜𝑣(𝑦, 𝑦̂)

𝜎𝑦𝜎𝑦̂
 

2. coefficient of determination (R2) is defined as 1 −
∑ (𝑦𝑖̂−𝑦̅ )2

𝑖

∑ (𝑦𝑖− 𝑦̅ )2
𝑖

  

3. mean squared error (MSE) is defined as 
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1  

4. mean absolute error (MAE) is defined as 
1

𝑛
∑ |𝑦𝑖 − 𝑦𝑖̂|

𝑛
𝑖=1  

where cov is the covariance, σ is the standard deviation, y is the observed value and ŷ is 
the predicted value, where y̅ is the mean of the observed value. 
 
Model Reliability: 
 
We will use two types of intraclass correlation (ICC) 41 that are commonly used in MRI 
studies19: 

1. ICC(2,1) is defined as 
𝑀𝑆𝑝−𝑀𝑆𝑒

𝑀𝑆𝑝+(𝑘−1)𝑀𝑆𝑒+ 
𝑘

𝑛
 (𝑀𝑆𝑡−𝑀𝑆𝑒)

  

2. ICC (3,1) is defined as 
𝑀𝑆𝑝−𝑀𝑆𝑒

𝑀𝑆𝑝+(𝑘−1)𝑀𝑆𝑒
 

where MSp is mean square for participants, MSe is mean square for error, MSt is mean 
square for time points (i.e., measurements), n is the number of participants, k is the number 
of time points.  
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Model Interpretability (i.e., feature importance):  
 
Examining feature importance of the layer-one model will allow us to demonstrate which of 
the brain indices contribute highly to the prediction of the modality-specific models. 
Similarly, examining feature importance of the layer-two model will allow us to demonstrate 
which of the modalities contribute highly to the prediction of the stacked models. For linear 
algorithms (Elastic Net24 and SVM with a linear kernel25), we will examine their coefficient 
weight for each brain index. For other algorithms, we will use SHAP30, ALE31 and feature 
interaction32.  
 
More specifically, once we identify which of the modalities contribute highly to the prediction 
of the stacked model (based on the feature importance indices, such as coefficient weight 
and/or SHAP), we will then examine the brain features of the top-performing modality-
specific models that contributed highly to the prediction (again, based on the feature 
importance indices). To support the parieto-frontal integration theory of intelligence33, we 
expect to see the areas in the frontoparietal network as top-performing brain features 
across top-performing MRI modalities in predicting the changes in cognitive abilities. 
 
Construct validity: 
 
To ensure the construct validity of our predictive model for the changes in cognitive 
abilities, we will also test the relationship between quality of sleep and predicted value of 
the final model. Studies show the relationship between poor cognitive abilities and sleep  in 
aging individuals44, and thus our brain-based model for the changes in cognitive abilities 
should also be varied as a function of the quality of sleep. 
 
Variables needed at which ages:  
 
DMHDS Age 38 variables: 

1. Cognitive assessment: 

 All WAIS-IV scores, including information, similarities, vocabulary, symbol 
search, arithmetic, digit span, block design, matrix reasoning and picture 
completion  

2. Sleep quality 
DMHDS Age 45 variables: 

1) Cognitive assessment 

 All WAIS-IV scores, including information, similarities, vocabulary, symbol 
search, arithmetic, digit span, block design, matrix reasoning and picture 
completion 

2) Sleep quality 
3) Neuroimaging: 

 Structural MRI 

 fMRI time course for resting state  

 fMRI time course for the Emotion task  

 fMRI time course for the Reward task 

 fMRI time course for the Stroop task 

 fMRI time course for the Memory task 
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Significance of the Study (for theory, research methods or clinical practice):  
  
We aim to better understand the neural basis of aged-related changes in cognitive abilities 
from young adult to middle age. Our brain-based predictive models built from the 
population-based DMHDS will provide a baseline for normal aging against which abnormal 
aging can be compared. Given the use of high-quality longitudinal data of DMHDS, our 
predictive model will not suffer from issues commonly found in other aging studies, such as 
the selection bias, cohort effect and attrition. Moreover, our predictive modelling approach 
will maximize predictability of the models, while still allowing for neurobiological insights 
through their interpretability. Thus, according to the parieto-frontal integration theory of 
intelligence33 and a recent meta-analysis34, we will examine the role of areas in the 
frontoparietal network across different MRI modalities in predicting the changes in cognitive  
abilities. Next, we will also demonstrate which of the modalities capture cognitive ability in 
middle-age population, and which do not. This information will move the field forward by 
allowing researchers to focus on informative modalities. Accordingly, using the rich MRI 
dataset from the DMHDS will provide a unique opportunity for us to enhance the 
neurobiological understanding aged-related changes in cognitive abilities. 
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