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Disappointing results from clinical trials designed to delay structural brain decline and

the accompanying increase in risk for dementia in older adults have precipitated a

shift in testing promising interventions from late in life toward midlife before irreversible

damage has accumulated. This shift, however, requires targeting midlife biomarkers

that are associated with clinical changes manifesting only in late life. Here we

explored possible links between one putative biomarker, distributed integrity of brain

white matter, and two intervention targets, cardiovascular fitness and healthy lifestyle

behaviors, in midlife. At age 45, fractional anisotropy (FA) derived from diffusion

weighted MRI was used to estimate the microstructural integrity of distributed white

matter tracts in a population-representative birth cohort. Age-45 cardiovascular fitness

(VO2Max;N = 801) was estimated from heart rates obtained during submaximal exercise

tests; age-45 healthy lifestyle behaviors were estimated using the Nyberg Health

Index (N = 854). Ten-fold cross-validated elastic net predictive modeling revealed that

estimated VO2Max was modestly associated with distributed FA. In contrast, there

was no significant association between Nyberg Health Index scores and FA. Our

findings suggest that cardiovascular fitness levels, but not healthy lifestyle behaviors,

are associated with the distributed integrity of white matter in the brain in midlife. These

patterns could help inform future clinical intervention research targeting ADRDs.

Keywords: Alzheimer’s disease, aging, white matter, cardiovascular fitness, fitness behavior, healthy lifestyle,

neurodegeneration

INTRODUCTION

An aging global population has highlighted the need to preserve and prolong both physical and
mental health to slow the accumulating social and financial burden associated with extended
longevity (Burns et al., 2008; Christensen et al., 2009; Deary et al., 2009; Dougherty et al.,
2017; Chang et al., 2019). This burden, in part, reflects increased numbers of older adults
with Alzheimer’s Disease and Related Dementias (ADRD) including vascular dementia and
frontotemporal dementia. Recent estimates suggest that more than 5 million Americans aged
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65 years and older are currently affected by ADRD (Facts and
Figures, 2020). However, no cure for ADRD currently exists.
Thus, there is a critical need for research into preventative
measures or interventions to delay or prevent onset of ADRD
and, more generally, minimize the impact of aging on physical
and mental health.

Of particular importance to this goal are large-scale efforts
to identify effective early interventions against age-related
deterioration of brain structure, which precedes clinical diagnosis
of ADRD and is often a precursor to decreased quality of life
and cognitive decline (Freedman et al., 2002; Deary et al., 2009;
Bennett and Madden, 2014; Brasure et al., 2018; Ding et al.,
2018; Fan et al., 2019; Musiek and Morris, 2020; Tarumi et al.,
2020). One potential intervention against aging-related structural
decline in the brain is improving aspects of physical health,
such as cardiovascular fitness (Cyarto et al., 2012; Zhu et al.,
2015; Boraxbekk et al., 2016; Voss et al., 2016; Matura et al.,
2017; Ding et al., 2018; Halloway et al., 2018; Clark et al.,
2019; Wassenaar et al., 2019; Johnson et al., 2020; Tarumi et al.,
2020). As a measure of the maximum rate at which the body
can utilize oxygen (Garatachea et al., 2015; Beltz et al., 2016;
Voss et al., 2016; Harridge and Lazarus, 2017), cardiovascular
fitness reflects how efficiently the respiratory and circulatory
systems are providing oxygenated blood to the body during
active moments (Beltz et al., 2016; Williams et al., 2017). The
advantages of good cardiovascular fitness for physical health are
well-documented, including increasedmobility, increased quality
of life, and decreased cardiovascular disease risk (Etnier et al.,
2006; Evans, 2010; Erickson et al., 2014; Harridge and Lazarus,
2017). Importantly, emerging evidence suggests cardiovascular
fitness may also benefit structural brain integrity.

Better cardiovascular fitness has been associated with
structural features of the brain’s gray matter including greater
average cortical thickness (Hurtz et al., 2014; Vuksanovi et al.,
2019; Nicastro et al., 2020), total cortical surface area (Vuksanovi
et al., 2019; Elliott, 2020), and subcortical volume (Erickson
et al., 2011; Dougherty et al., 2017; Jonasson et al., 2017; Feter
et al., 2018). We recently reported that midlife cardiovascular
fitness was associated with thicker frontotemporal cortex and
greater gray matter volume of cerebellar cortex in members
of the Dunedin Study, which has followed a large population
representative birth cohort for five decades. Importantly, aging-
related cortical thinning in frontotemporal regions has been
associated with cognitive decline in both healthy individuals and
those with Alzheimer’s disease (Singh et al., 2006; Burggren et al.,
2008; McGinnis et al., 2011). Moreover, frontotemporal atrophy
is a common archetype of pathological aging and is considered
one of the main causes of dementia (Fjell et al., 2015; Cox
et al., 2021). Thus, associations between cardiovascular fitness
and frontotemporal cortical thickness suggest possible salubrious
effects of improving fitness on age-related brain atrophy. That
these associations were detectable in midlife is important as this
is a window in the lifespan ripe for early targeted interventions to
slow or even prevent age-related structural decline in the brain
associated with risk for ADRD before too much damage has
accrued (Sperling et al., 2014;Moffitt et al., 2017;Wassenaar et al.,
2019).

Like gray matter, structural atrophy of white matter is also
indicative of increased risk for ADRD and closely linked with
cognitive ability (Au et al., 2006; Deary et al., 2006, 2009;
Penke et al., 2012; Bennett and Madden, 2014; Cole and Franke,
2017; Mito et al., 2018; Fan et al., 2019; Elliott, 2020). In
fact, research suggests that aging-related deterioration of the
structural integrity of white matter may better signal later
cognitive decline and mild cognitive impairment than gray
matter, as white matter may be more susceptible to early aspects
of disordered aging (Liu et al., 2017; Araque Caballero et al.,
2018; Mito et al., 2018; Wen et al., 2019). However, comparably
less research has been conducted on possible links between
cardiovascular fitness and white matter integrity and what
research does exist is a mix of positive, negative, and null findings
(Perea et al., 2016; Sexton et al., 2016, 2020; Voss et al., 2016;
Fissler et al., 2017; Clark et al., 2019; Wassenaar et al., 2019). As
age-related atrophy of white matter tends to be more widespread
than localized (Liu et al., 2017), one reason for the trend of mixed
findings could be the focus on the microstructural integrity
of individual white matter tracts rather than assessing overall
integrity across the brain. Studies investigating connections
between cardiovascular fitness and white matter, especially in
younger or cognitively healthy cohorts where changes in white
matter microstructural integrity may be less apparent (Liu et al.,
2017), could overlook small distributed changes that may not
survive correction for multiple comparisons within any one tract.

Another possible reason for the observed mixed results could
be the conflation of cardiovascular fitness with healthy lifestyle
behaviors such as physical activity. Lifestyle interventions
designed to improve cardiovascular fitness often do so indirectly,
such as by increasing physical activity (Sexton et al., 2016;
Wassenaar et al., 2019; d’Arbeloff, 2020). However, increasing
healthy lifestyle behaviors is not necessarily correlated with
improved cardiovascular fitness (d’Arbeloff, 2020). Thus,
prior studies using self-report measures of healthy lifestyle
behaviors as a proxy for cardiovascular fitness when examining
associations with white matter structural integrity may have
yielded different results from studies using direct measures
of cardiovascular fitness (Sexton et al., 2016; d’Arbeloff,
2020).

Here, we used data from members of the Dunedin
Study to examine possible differential associations between
distributed white matter integrity and both healthy lifestyle
behaviors (N = 854) and cardiovascular fitness (N = 801)
in midlife. As previous studies focusing on specific white
matter tracts have yielded mixed findings (Perea et al., 2016;
Sexton et al., 2016; Fissler et al., 2017; Clark et al., 2019;
Wassenaar et al., 2019), we did not limit our analyses to
a priori tracts of interest. Instead, we leveraged exploratory
elastic net modeling to assess how cardiovascular fitness and
healthy lifestyle behaviors were independently associated with
distributed white matter integrity across the brain (Lee et al.,
2015; Liu et al., 2017). Identifying differential links between
cardiovascular fitness and healthy lifestyle behaviors with white
matter integrity could help guide the optimal matching of
putative interventions with midlife brain biomarkers in future
clinical intervention research.
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MATERIALS AND METHODS

Study Design and Population
Data were derived from the Dunedin Study, a longitudinal
investigation of health and behavior in a population
representative birth cohort. Study members (N = 1,037;
91% of eligible births; 52%male) are all individuals born between
April 1972 and March 1973 in Dunedin, New Zealand (NZ),
who were eligible based on residence in the province and who
participated in the first assessment at age 3 years (Poulton et al.,
2015). The cohort represented the full range of socioeconomic
status (SES) in the general population of NZ’s South Island
and as adults matched the NZ National Health and Nutrition
Survey on key adult health indicators (e.g., body mass index
(BMI), smoking, GP visits) and the NZ Census of citizens of
the same age on educational attainment (Richmond-Rakerd
et al., 2020). The cohort is primarily white (93%), matching
South Island demographics (Poulton et al., 2015). Data were
available at birth and assessments were carried out at ages
3, 5, 7, 9, 11, 13, 15, 18, 21, 26, 32, 38, and most recently
(completed April 2019) 45 years, when 94.1% (N = 938) of the
997 participants still alive took part. Of these 938 Studymembers,
875 (93%) completed MRI scanning. Attrition analyses revealed
that scanned Study members resembled still-living cohort
members on childhood IQ and their family-of-origin’s socio-
economic status (Supplementary Figure 1). The relevant ethics
committees approved each phase of the Study and written
informed consent was obtained from all Study members before
their participation.

Estimated Maximum Oxygen Uptake
Midlife cardiovascular fitness was estimated by measuring heart
rate in response to a submaximal exercise test on a friction-
braked cycle ergometer at age 45. Depending on the extent to
which heart rate increased during a 2-min 50W warm-up, the
workload was adjusted to elicit a steady heart rate in the range
of 130–170 beats per minute. After a further 6-min constant
power output stage, the maximum heart rate was recorded and
used to estimate maximal volume of oxygen uptake (VO2Max)
adjusted for body weight in milliliters per minute per kilogram
(mL/min/kg) according to standard protocols (Cullinane et al.,
1988).

Healthy Lifestyle Behaviors
Four major lifestyle factors (smoking history, average alcohol
consumption, body mass index (BMI), and leisure-time physical
activity) were combined into an aggregate measure of health
and fitness behavior based on a recently published healthy
lifestyle index (Nyberg et al., 2020). First, each of the four
lifestyle factors were independently scored based on the following
prespecified thresholds:

• BMI: <25.0 (2 points; optimal), 25.0–29.9 (1 point;
intermediate), and ≥30.0 (0 points; poor)

• Smoking: Never smoked (2 points; optimal), former smoker (1
point; intermediate), and current smoker (0 points; poor)

• Average midlife alcohol consumption (total number of
alcoholic drinks consumed in an average week; 1 drink equals

10 g of ethanol): 1–14 (women) or 1–21 (men) drinks per
week (2 points; optimal), no alcohol consumed (1 point,
intermediate), and ≥15 (women) or ≥22 (men) drinks per
week (0 points; poor)

• Average midlife leisure-time physical activity: ≥2.5 h of
moderate activity/week or ≥1.25 h of vigorous activity/week
(2 points; optimal), activity levels lower than optimal but
higher than poor (1 point; intermediate), and no or very little
moderate/vigorous activity/week (0 points; poor).

The score for each factor was summed to compute an overall
healthy lifestyle score (i.e., Nyberg Health Index) for each
participant resulting in scores ranging from 0 (lowest healthy
behaviors, highest risk for negative health outcomes) to 8 (highest
healthy behaviors, lowest risk for negative health outcomes).

MRI Data Acquisition and Processing
Each participant was scanned using a MAGNETOM Skyra
(Siemens Healthcare GmbH) 3T scanner equipped with a 64-
channel head/neck coil at the Pacific Radiology Group imaging
center in Dunedin, NZ. Diffusion-weighted images providing full
brain coverage were acquired with 2.5mm isotropic resolution
and 64 diffusion weighted directions (4,700ms repetition time,
110.0ms echo time, b-value 3,000 s/mm2, 240mm field of view,
96 × 96 acquisition matrix, slice thickness = 2.5mm). Non-
weighted (b = 0) images were acquired in both the encoding
(AP) and reverse encoding (PA) directions to allow for EPI
distortion correction.

Diffusion images were processed in FSL (http://fsl.fmrib.
ox.ac.uk/fsl) as follows. Raw diffusion-weighted images were
corrected for susceptibility artifacts, subject movement, and eddy
currents using topup and eddy. Images were then skull-stripped
and fitted with diffusion tensor models at each voxel using
FMRIB’s Diffusion Toolbox (FDT; http://fsl.fmrib.ox.ac.uk/fsl/
fslwiki/FDT). The resulting FA images from all participants
were non-linearly registered to the FA template developed by
the Enhancing Neuro Imaging Genetics Through Meta-Analysis
consortium (ENIGMA), a minimal deformation target calculated
across a large number of individuals (Jahanshad et al., 2013).

The images were then processed using the tract-based
spatial statistics (TBSS) (Smith et al., 2006) modified to project
individual FA values onto the ENIGMA-DTI skeleton. Following
the extraction of the skeletonized white matter and projection
of individual FA values, ENIGMA-tract-wise regions of interest,
derived from the Johns Hopkins University (JHU) white matter
parcellation atlas (Mori et al., 2005), were overlaid to extract the
mean FA across the full skeleton and average FA values for 21
bilateral and 6 midline tracts (i.e., 48 individual values, Figure 1).
Data from 7 Study members were removed because diffusion
images were collected with 20-channel head coil to accommodate
large head and shoulder size, leading to poor diffusion image
quality per visual inspection. In addition, data from 3 Study
members were removed due to major incidental findings, 5
due to excessive (>3mm) motion detected with the eddy tool,
and 6 due to missing diffusion scans. Thus, there were high-
quality diffusion imaging data from 854 Study members for the
current analyses. Nyberg Health Index scores were calculated
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FIGURE 1 | Stylized depiction of 21 bilateral and 6 midline tracts from the Johns Hopkins University (JHU) white matter parcellation atlas (Mori et al., 2005). FA values

used for analyses were obtained by calculating tract-wise means from the intersection of the atlas and the individual FA skeletons generated using TBSS (see

subsection MRI Data Acquisition and Processing for details).

for all of these 854 Study members. An additional 53 subjects
were missing estimated VO2Max due to a myriad of issues (e.g.,
disability, injury, non-compliance, failing to complete the task,
and machine malfunction) leaving anN of 801 for cardiovascular
fitness analyses.

Analyses
The R package “caret” was utilized to run all analyses
(Kuhn, 2008). To address sex differences in VO2Max
(Supplementary Figure 2) and parse out the unique variance
accounted for solely by distributed white matter integrity, we
regressed out sex and ran all analyses using residualized scores.
As there was no such stratification in Nyberg Health Index
scores, sex was simply included as a covariate in analyses of
this measure.

To avoid over-fitting and adjust for high correlations between
variables, we used elastic net modeling, a regularized regression
method that incorporates the mixed penalty term l1-norm (λ1)
from Least Absolute Shrinkage and Selection Operator (LASSO)
and the penalty term l2-norm (λ2) from Ridge regression. Elastic
net, like LASSO and Ridge penalty regression methods, uses
penalty terms to minimize both bias and variance in base
ordinary least square (OLS) models through shrinking regression
coefficients toward zero (Guo et al., 2018). However, studies have
indicated that the use of elastic net can result in lower mean
squared error than LASSO or Ridge when variables are highly
correlated (Waldmann et al., 2013), as was the case with average
FA values for the 48 white matter tracts used in our analyses
(Avg r = 0.29, Range = 0.002–0.82; Supplementary Figure 3).
Further, elastic net results in a higher number of correctly
identified predictor variables than LASSO and has a lower false
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positive rate than Ridge (Zou and Hastie, 2005; Waldmann
et al., 2013). An additional parameter, α, is used in elastic net
to determine how much weight should be given to either λ1 or
λ2. An elastic net with an α value of 0 performs much like Ridge
regression; an α value of 1 performs like LASSO.

In our analyses, data were first randomly split into a training
(70%) and a test (30%) subset. After centering and scaling all
variables in the training subset, Ten-fold cross-validation was
used to determine the best α and λ values that correspond to
the lowest prediction error and the best model fit. Optimized
parameters were then inserted into the model and the model
was trained to predict sex-adjusted VO2Max within the training
subset. Through the initial training, we obtained weighted partial
coefficients for each of the predictors included in the model.
We then used the trained model to predict scores in the held-
aside test subset and generate predicted residualized values for
each white matter tract. Prediction within the test subset was
assessed via correlating actual and predicted residualized scores
and calculating R2 and RMSE statistics.

To further ensure confidence in the robustness of our results
and to minimize generalization error of the prediction, we used a
form of ensemblemodeling called bagging (Kotu andDeshpande,
2015). The full elastic net analyses described above were re-run
for both variables of interest (residualized VO2Max and Nyberg
Health Index) 1,000 times, each time with a new randomly split
testing and training dataset. The ensemble model then aggregates
the prediction of each of the 1,000 base models (Kotu and
Deshpande, 2015). Distributions and means of output statistics
of each of the base models were used to improve accuracy and
confidence in the predictive capacity of our models and partial
regression coefficients.

RESULTS

Cohort Characteristics
The average VO2Max was 26.99 mL/min/kg (SD = 7.37, range
= 9.05–48.76) and the average score on the Nyberg Health
Index was 4.97 (SD = 1.84, range = 0–8). There was a
significant association between VO2Max and Nyberg Health
Index scores (β = 0.27, CI = 0.22–0.32, p < 0.001). For average
FA values of each white matter tract used in the analyses see
Supplementary Table 1. Test-retest reliability of tract-wise FA,
determined using data from a subset of 20 Study members who
were scanned a second time (Elliott et al., 2020), was high (mean
ICC= 0.879± 0.109 SD). Information on inter-tract correlations
can be seen in Supplementary Figure 3.

Elastic Net Modeling of Cardiovascular
Fitness (N = 801)
White matter tract anisotropy predicted estimated VO2Max with
initial model parameters of best fit of α = 0.44, λ = 0.66,
MAE = 4.49, RMSE = 5.61. The absolute value of partial
regression coefficients for multiple white matter tracts remained
non-zero after training the initial elastic net model predicting
VO2Max (Figure 2A). The correlation between model-predicted
and actual VO2Max within the set-aside test subset was
significant (R2 = 0.028, p = 0.003; Figure 2B). Subsequent

testing confirmed the value of multiple white matter tracts in
predicting VO2Max (Figure 2C). However, the distribution of
R2 gathered from multiple iterations of the model through
baggage testing indicated that the link between distributed white
matter anisotropy and cardiovascular fitness was likely more
modest than the initial estimations (Ensemble R2 = 0.013,
median = 0.01, 25th−75th quartile = 0.005–0.02; Figure 2D).
Of the individual white matter tracts included in the model
that remained non-zero after training, some explained more
unique variance than others. For example, the genu of the
corpus callosum, the posterior thalamic radiata, the superior
cerebellar peduncles, and parts of the internal capsule had
the highest partial regression coefficients. Further, these tracts
remained stable predictors throughout subsequent baggage
testing (Figures 2A,C).

Elastic Net Modeling of Healthy Lifestyle
Behaviors (N = 854)
White matter tract anisotropy predicted estimated Nyberg Index
Scores with initial model parameters of best fit of α = 0.56, λ

= 6.26, MAE = 1.46, RMSE = 1.8. The absolute value of partial
regression coefficients for multiple white matter tracts remained
non-zero after training the initial elastic net model predicting
Nyberg Health Index Scores (Figure 3A). Sex was the most
relevant predictor of the Nyberg Health Index. The correlation
between the model-predicted and actual Nyberg Health Index
scores within the set-aside test subset were not significant (R2

= 0.0025, p = 0.44; Figure 3B). Subsequent baggage testing
confirmed that the model lacked predictive utility (Ensemble R2

= 0.0062, median = 0.004, 25th−75th quartile = 0.0001–0.008,
Figure 3C) and did not confirm the value of any white matter
tracts in predicting scores.

DISCUSSION

Aging-related structural deterioration of the brain undergirds
cognitive decline, one of the most debilitating symptoms of
ADRD (Fjell et al., 2014; Vuksanovi et al., 2019; Elliott, 2020).
The structural integrity of distributed white matter tracts is
critical for normal cognition and age-related deterioration of
white matter contributes to cognitive decline. Through the use
of elastic net modeling, we found modest associations between
cardiovascular fitness, as indexed by VO2Max, and the structural
integrity of distributed white matter, as indexed by tract-wise
FA, in a large population-representative birth cohort now in
midlife. The observed associations between cardiovascular fitness
and white matter integrity were distributed across the brain
and remained stable predictors, though attenuated, through
subsequent ensemble modeling. Emphasizing the importance of
objective fitness measures, similar associations between healthy
lifestyle behaviors, as indexed by the Nyberg Health Index, and
white matter integrity were not observed.

Our discovery of associations between white matter integrity
and cardiovascular fitness but not healthy lifestyle behaviors is
consistent with research on exercise and structural integrity of
the brain (Sexton et al., 2016; d’Arbeloff, 2020). Prior clinical
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FIGURE 2 | Distributed white matter tract integrity and cardiovascular fitness. (A) The absolute value of partial regression coefficients for each tract that remained

non-zero after training the initial elastic net model predicting residualized VO2Max. (B) Scatterplot of the correlation between model-predicted and actual sex-adjusted

estimated VO2Max (centered and scaled) within the set-aside test subset (R2 = 0.028, p = 0.003). (C) Absolute value of the average partial regression coefficients for

each tract from all iterations of the ensemble modeling. (D) Distribution of R2s gathered from the subsequent ensemble modeling using 1,000 iterations of the elastic

net model (Ensemble R2 = 0.013, 25th−75th quartile = 0.005–0.02).

trials have found that exercise interventions targeting age-related
structural decline in gray matter only show positive results if the
participants’ cardiovascular fitness improved (d’Arbeloff, 2020).
Similar findings have been reported in studies targeting white
matter (Sexton et al., 2016). Thus, targeting improvements in

healthy lifestyle behaviors to slow or prevent aging-related brain
atrophy may not be effective if the interventions do not result
in improved physiological fitness (d’Arbeloff, 2020). Moreover,
links between gray matter and fitness emerged in prior studies
regardless of the experimental condition suggesting that general
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FIGURE 3 | Distributed white matter tract integrity and Nyberg Health Index scores. (A) The absolute value of partial regression coefficients for each tract that

remained non-zero after training the initial elastic net model predicting Nyberg Health Index scores. (B) Scatter plot showing the correlation between model-predicted

and actual Nyberg Health Index scores (R2 = 0.0025, p = 0.44). (C) Distribution of R2s gathered from the subsequent ensemble modeling using 1,000 iterations of

the elastic net model, which did not reveal any non-zero tracts (Ensemble R2 = 0.0062, 25th−75th quartile = 0.0001–0.008). Sex was included as a covariate in all

modeling.

improvement in cardiovascular fitness may have benefits for the
brain (d’Arbeloff, 2020). Further research could help elucidate
this pattern and help identify both the level of activity necessary
to improve cardiovascular fitness and the threshold at which
improvements in cardiovascular fitness may manifest in the
brain. However, it is important to note that the Nyberg Health
Index is based on self-report, which may introduce additional
noise into analyses (Matthews et al., 2012). Thus, it is possible
that objectively measured lifestyle behaviors may have a different
association with distributed white matter integrity.

While our analyses leveraged information regarding the
integrity of distributed white matter tracts to identify associations
with cardiovascular fitness, further inspection revealed a
differential contribution of some tracts over others to this
overall effect. Specifically, tracts in frontal, temporal, and motor
regions (i.e., corpus callosum, thalamic radiata, corona radiata,
cerebellar peduncles, and internal capsule) accounted for greater
unique variance in cardiovascular fitness in the elastic net model.
This is consistent with some prior research on links between
white matter, cardiovascular fitness, and aging. For example,
the structural integrity of the cerebellum has been linked with
reduced cognitive processing and general motor functioning in
those who later develop ADRD (Toniolo et al., 2020). In addition,
the integrity of white matter tracts in frontal and temporal
regions may be particularly vulnerable to aging (Teipel et al.,
2007; Wen et al., 2019; Toniolo et al., 2020), and lower structural
integrity of these tracts has been linked with increased risk for
cognitive decline and ADRD (Lee et al., 2015; Yang et al., 2016;
Habes et al., 2018). For example, the corpus callosum, the tract
that explained the most unique variance in our analyses, may be
particularly relevant for age-related disorders including ADRD
as it is highly involved in hemispheric integration and inhibition
central to cognition (Goldman et al., 2017; Hsieh et al., 2020).
Additionally, age-related decreases in FA within the genu of the

corpus callosum has been linked with lower performance across a
variety of cognitive domains such as working memory, executive
function, and attention (Goldman et al., 2017; Loprinzi et al.,
2020). Further, a recent meta-analysis found evidence suggesting
aerobic exercise that enhances cardiovascular fitness is associated
with increases in the structural integrity of the corpus callosum
(Loprinzi et al., 2020).

Our study is not without limitations. First, the associations
observed between tract-wise FA and VO2Max were quite small
as was the overall variance explained. However, these effect
sizes are from a population-representative sample with no
selection bias and small effect sizes may be consequential over
the long term, either because effects accumulate over time
or because many individuals are affected (Funder and Ozer,
2019). Second, our data are cross-sectional as we have only
one neuroimaging timepoint. In general, observational cross-
sectional analyses are poor at leveraging causal information and
establishing causal effect, in part due to a lack of randomization
and variable control within study parameters and analyses.
Third, our use of cross-sectional measures of both brain
structure and cardiovascular fitness ignores the possibility of
temporal trends within relationships. Given that aging-related
decline occurs over time, future longitudinal studies should
look to utilize multiple neuroimaging timepoints to assess
the relationship between cardiovascular fitness and change in
brain structure over time. Fourth, the Dunedin Study cohort
is predominantly NZ European. Thus, replication is needed in
diverse populations to identify how generalizable our findings
may be across different demographics. Fifth, FA represents a
summary measure of white matter integrity that lacks specificity
in terms of which microstructural elements (e.g., axon density
or degree of myelination) may be driving observed associations
(Emsell et al., 2016). Future research could look to address
this lack of specificity through the use of alternative white
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matter modeling techniques such as diffusion spectrum imaging
or spherical deconvolution (Seunarine and Alexander, 2014).
Sixth, our measure of healthy lifestyle behaviors was limited
to alcohol consumption, tobacco smoking, physical inactivity,
and obesity. Thus, it remains possible that other healthy
lifestyle behaviors not tested here (e.g., sleep trends, blood
pressure medication, etc.) may impact white matter integrity.
Finally, while white matter integrity is strongly associated
with cognitive ability and white matter atrophy with cognitive
decline (Liu et al., 2017; Araque Caballero et al., 2018; Mito
et al., 2018; Toniolo et al., 2020), how these associations
interact with cardiovascular fitness must be explicitly tested in
future research.

These limitations notwithstanding, our findings—though
modest—suggest that the distributed integrity of white matter
in midlife may serve as a useful target for in intervention
studies leveraging positive changes in cardiovascular fitness.
These findings are bolstered by the population-representative
nature of our Study cohort who were all the same age when
data was collected thereby removing age as a confound and
increasing generalizability. Moreover, identifying links between
cardiovascular fitness and white matter integrity at age 45
may be critical as midlife represents a point in the lifespan
where aging-related structural decline is beginning to appear
in the brain (d’Arbeloff et al., 2019) but irreversible damage
may not have yet accrued. Thus, midlife may be an ideal
period for early intervention and our findings lend further
support to the specific potential of cardiovascular fitness
interventions to slow or prevent aging-related decline in
the brain.
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