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Abstract 205 

Childhood aggressive behavior (AGG) has a substantial heritability, with limited success in genome-206 

wide association studies. Here we present a genome-wide association meta-analysis (GWAMA) of 207 

childhood AGG, in which all phenotype measures across age from multiple assessors were included. 208 

We analyzed phenotype assessments for a total of 328 935 observations from 87 485 children aged 209 

between 1.5 and 18 years, while accounting for sample overlap. We also meta-analyzed within 210 

subsets of the data – i.e. within rater, instrument and age. SNP-heritability for the overall meta-211 

analysis (AGGoverall) was 3.31% (SE=0.0038). We found no genome-wide significant SNPs for AGGoverall. 212 

The gene-based analysis returned three significant genes: ST3GAL3 (P=1.6E-06), PCDH7 (P=2.0E-06) 213 

and IPO13 (P=2.5E-06). All three genes have previously been associated with educational traits. 214 

Polygenic scores based on our GWAMA significantly predicted aggression in a holdout sample of 215 

children (variance explained = 0.44%) and in retrospectively assessed childhood aggression (variance 216 

explained = 0.20%). Genetic correlations (��) among rater-specific assessment of AGG ranged from 217 

��=0.46 between self- and teacher-assessment to ��=0.81 between mother- and teacher-assessment. 218 

We obtained moderate to strong ��’s with selected phenotypes from multiple domains, but hardly 219 

with any of the classical biomarkers thought to be associated with AGG. Significant genetic 220 

correlations were observed with most psychiatric and psychological traits (range ����: 0.19 – 1.00), 221 

except for obsessive-compulsive disorder. Aggression had a negative genetic correlation (��=~ -0.5) 222 

with cognitive traits and age at first birth. Aggression was strongly genetically correlated with 223 

smoking phenotypes (range ����: 0.46 – 0.60). The genetic correlations between aggression and 224 

psychiatric disorders were weaker for teacher-reported AGG than for mother- and self-reported 225 

AGG. The current GWAMA of childhood aggression provides a powerful tool to interrogate the rater 226 

specific genetic etiology of AGG.  227 

 228 

 229 
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Introduction  230 

There is a variety of phenotypic definitions of aggressive behavior (AGG), from broadly defined 231 

externalizing problems to narrow definitions like chronic physical aggression [1]. Generally any action 232 

performed with the intention to harm another organism can be viewed as AGG [2, 3]. AGG is 233 

considered a common human behavior [4], with people varying in the degree of AGG they exhibit [5]. 234 

Children typically display AGG early in life, after which symptoms tend to diminish [6, 7], although in 235 

some individuals AGG persists into adulthood [8]. AGG is also part of numerous childhood and adult 236 

disorders [9], including oppositional defiant disorder (ODD) and conduct disorder (CD)[10]. In its 237 

extreme forms, AGG may be considered a disorder by itself – inflicting a huge personal and financial 238 

burden on the individual, their relatives, friends, and society as a whole [11]. In general population 239 

studies, AGG is commonly treated as a quantitative trait, and pathological AGG has been argued to be 240 

best seen as the extreme end of such a continuum [12–14]. Childhood AGG co-occurs with many other 241 

behavioral, emotional, and social problems [15, 16] and is associated with increased risk of developing 242 

negative outcomes later in life, including cannabis abuse [17], criminal convictions [18], anxiety 243 

disorder [19], or antisocial personality disorder [20]. Not all associated outcomes are harmful [21]. For 244 

example, children who learn to control their impulses and apply aggressive acts as a well-timed 245 

coercion strategy are generally more liked by their peers and score higher on social dominance [22]. 246 

Despite a heritability of roughly 50% [5, 23], genome-wide association studies (GWASs) on 247 

AGG have not identified genome-wide significant loci that replicated [1]. Childhood cohorts often have 248 

rich longitudinal data and assessments from multiple informants and we aimed to increase power to 249 

detect genomic loci via multivariate genome-wide association meta-analysis (GWAMA) across 250 

genetically correlated traits [24, 25]. In AGG, twin studies have reported moderate to high genetic 251 

correlations among instruments, raters, and age [26–29]. Childhood behavior can be context 252 

dependent, with teachers, fathers, and mothers each observing and rating aggression against a 253 

different background. Teachers are typically unrelated to the child, and see the child in the context of 254 

a structured classroom and can judge the child’s behavior against that of other pupils. Parents share 255 
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part of their genome with their offspring and, most often, a household. Parental genomes also 256 

influence the home environment, and it is predominantly within this context that parents observe the 257 

child’s behavior. Multiple assessments of aggression by teachers, fathers, and mothers, by different 258 

instruments and at different ages, provides information that may be unique to a specific context and 259 

therefore may capture context-dependent expression of AGG. These considerations support an 260 

approach in which all AGG data are simultaneously analyzed, while retaining the ability to analyze the 261 

data by rater. Our analyses include repeated observations on the same subject, which requires 262 

appropriate modeling of the clustered data, since the covariance between test statistics becomes a 263 

function of a true shared genetic signal and the phenotypic correlation among outcomes [29]. We 264 

developed an approach that allowed inclusion of all measures for a child – e.g. from multiple raters at 265 

multiple ages – and resolved issues of sample overlap at the level of the meta-analysis. By doing so we 266 

make full use of all data and maximize statistical power for gene discovery. At the same time, by 267 

aggregating data at the level of the meta-analysis we retain the flexibility to estimate ��’s between 268 

AGG at different ages, by different raters and instruments, and test how AGG assessed by multiple 269 

raters differ in the �� with other phenotypes.  270 

Data on AGG from parent-, teacher- and self-report in boys and girls were collected in 29 271 

cohorts from Europe, USA, Australia, and New-Zealand with 328 935 observations from 87 485 272 

participants, aged 1.5 to 18 years. First, we combined all data to produce the largest GWAMA on 273 

childhood AGG to date. SNP-based association tests were followed up by gene-based analyses. We 274 

computed polygenic scores (PGSs) to test the out-of-sample prediction of AGG to explore the 275 

usefulness of our GWAMA in future research [30]. To assess genetic pleiotropy between AGG and 276 

associated traits, we estimated ��’s with a preselected set of external phenotypes from multiple 277 

domains – with a focus on psychiatric and psychological traits, cognition, anthropometric and 278 

reproductive traits, substance use, and classic biomarkers of AGG, including testosterone levels. 279 

Second, meta-analyses were done by rater, instrument, and age. We estimated ��’s across these 280 
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assessments of AGG. To identify context-specific genetic overlap with the external phenotypes, ��’s 281 

were also estimated between rater-specific assessments of AGG and the external phenotypes. 282 

 283 

Methodology  284 

Data description 285 

Extended description of the cohorts and phenotypes is supplied in the Supplemental Text and 286 

Supplementary Tables 1-9. Cohorts with assessment of AGG in genotyped children and adolescents 287 

took part in the meta-analysis. AGG was assessed on continuous scales, with higher scores indicating 288 

higher levels of AGG. Within cohort, samples were stratified by (1) rater, (2) instrument and (3) age, 289 

maintaining at least 450 observations in each stratum. We ran a univariate GWAS for each stratum 290 

within each cohort (Supplementary Table 8). To account for dependence within cohort in the meta-291 

analysis (see Supplementary Text), each cohort supplied the phenotypic covariance matrix between 292 

the AGG measures (Supplementary Table 10) and the degree of sample overlap (Supplementary 293 

Table 11) between the different strata. Supplementary Figure 1 shows the distribution of phenotypic 294 

correlations across all AGG measures. We assumed no sample overlap across cohorts, and 295 

phenotypic correlations among cohorts were set to zero and omitted from Supplementary Figure 1. 296 

Phenotypic correlations of zero also correspond to independent samples within a cohort. For GWASs 297 

with sample overlap, most phenotypic correlations ranged between 0.1 and 0.4, with a median value 298 

of 0.29. When stratified by rater, phenotypic correlations were more heavily centered around 0.4 299 

(see Supplementary Figure 1). The maximum number of correlations within cohort at a specific age is 300 

three based on four raters, with the largest number of observations within age-bin around age 12 301 

years. Within this age group, phenotypic correlations among raters ranged between 0.22 and 0.65, 302 

with a median of 0.34. The lowest phenotypic correlations were seen between teachers and parents. 303 

Since limited data were available on individuals of non-European ancestry, we restricted analyses to 304 

individuals of European ancestry.  305 
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In total, 29 cohorts contributed 163 GWASs, based on 328 935 observations from 87 485 306 

unique individuals (Supplementary Table 2). Children were 1.5 to 18 years old at assessment, or 307 

retrospectively assessed at these ages. Cohorts supplied between 1 and 26 univariate GWASs. 308 

Approximately 50% of the subjects were males. Most GWASs were based on maternal- (52.4%) and 309 

self-assessment (25.1%), with the remainder based on teacher (12.4%) and paternal report (10.1%). 310 

After QC, applied to the univariate GWASs, between 3.47M SNPs and 7.28M SNPs were retained for 311 

meta-analysis (see Supplementary Figure 2 and Supplementary Table 9). 312 

 313 

Meta-analysis 314 

Within cohort measures of AGG may be dependent due to including repeated measures of AGG over 315 

age and measures from multiple raters. To account for the effect of sample overlap, we applied a 316 

modified version of the multivariate meta-analysis approach developed by Baselmans et al [25] (see 317 

Table 1). Instead of estimating the dependence among GWASs based on the cross-trait-intercept 318 

(CTI) with linkage disequilibrium score regression (LDSC)[29, 31], the expected pairwise CTI value 319 

was calculated (Table 1) using the observed sample overlap and phenotypic covariance. The 320 

effective sample size (Neff) was approximated by the third formula in Table 1. When there is no 321 

sample overlap (or a phenotypic correlation equal to zero) between all GWASs (i.e. CTI is an identity 322 

matrix), Neff is equal to the sum of sample sizes.  323 

First, we meta-analyzed all available GWASs (AGGoverall). Second, we meta-analyzed all 324 

available data within rater (rater-specific GWAMAs). Third, rater-specific age-bins were created for 325 

mother- and self-reported AGG based on the mean ages of the subjects in each GWAS (age-specific 326 

GWAMA). To ensure that the age-specific GWAMAs would have sufficient power for subsequent 327 

analyses, age-bins were created such that the total univariate number of observations (Nobs) 328 

exceeded 15 000 (see Supplementary Text and Supplementary Table 12). For father- and teacher-329 

reported AGG there were insufficient data to run age-specific GWAMAs. Fourth, we performed 330 
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instrument-specific GWAMAs for (1) the ASEBA scales and (2) for the SDQ, because for these two 331 

instruments the total univariate Nobs was over 15 000.  332 

SNPs that had MAF<0.01, Neff<15 000, or were observed in less than two cohorts were 333 

removed from further analyses. SNP-heritabilities (����� ) were estimated using LDSC [31]. ��’s were 334 

calculated across stratified assessments of AGG using LDSC [29]. To ensure sufficient power for the 335 

genetic correlations, �� was calculated across stratified assessments of AGG if the Z-score of the 336 

�����  for the corresponding GWAMA was 4 or higher [29]. 337 

 338 

Gene-based tests 339 

For AGGoverall, a gene-based analysis was done in MAGMA [32]. The gene-based test combines P-340 

values from multiple SNPs to obtain a test statistic for each gene, while accounting for LD between 341 

the SNPs. From the MAGMA website (see URLs) we obtained (1) a list of 18 087 genes and their 342 

start- and end-positions, and (2) pre-formatted European genotypes from 1 000 Genomes phase 3 343 

for the reference LD. We applied a Bonferroni correction for multiple testing at α=0.05/18 087. A 344 

lookup for significant results was performed in GWAS Catalog and PhenoScanner (see URLs).  345 

 346 

Polygenic Scores 347 

All data were meta-analyzed twice more, once omitting all data from the Netherlands Twin Register 348 

(NTR) and once omitting the Australian data from the Queensland Institute for Medical Research 349 

(QIMR,) and the Mater-University of Queensland Study of Pregnancy (MUSP). As the NTR target 350 

sample we considered mother-reported AGG at age 7 (N=4 491), which represents the largest NTR 351 

univariate stratum. In the QIRM participants, we tested whether our childhood AGG PGS predicted 352 

adult retrospective assessment of their own CD behavior during adolescence (N = 10 706). We 353 

allowed for cohort-specific best practice in the polygenic score analysis. In the NTR, we created 16 354 

sets of PGSs in PLINK1.9 [33], with P-value thresholds between 1 and 1.0E-05 (see Supplementary 355 

Table 13). The remaining SNPs were clumped in PLINK. We applied an ��-threshold of 0.5 and 356 
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minimum clumping distance of 250 000 base pair positions [33]. Age, age2, sex, first five ancestry-357 

based principal components, a SNP-array variable, and interaction terms between sex and age, and 358 

sex and age2 were defined as fixed effects. To account for relatedness, prediction was performed 359 

using generalized equation estimation (GEE) as implemented in the “gee” package (version 4.13-19) 360 

in R (version 3.5.3). GEE applies a sandwich correction over the standard errors to account for 361 

clustering in the data [34]. To correct for multiple testing, we applied an FDR correction at α=0.05 for 362 

16 tests. QIMR excluded SNPs with low imputation quality (r2 = 0.6) and MAF below 1% and selected 363 

the most significant independent SNPs using PLINK1.9 [35] (criteria linkage disequilibrium r2 = 0.1 364 

within windows of 10 MBp). We calculated different PGS for seven P-value thresholds (p<1e-5, p 365 

<0.001, p <0.01, p <0.05, p <0.1, p <0.5, and p <1.0) of the GWAS summary statistics. PGS were 366 

calculated from the imputed genotype dosages to the 1 000 Genomes (Phase 3 Release 5) reference 367 

panel. We fitted linear mixed models, which controlled for relatedness using a Genetic Relatedness 368 

Matrix (GRM) and covariates sex, age, two dummy variables for the GWAS array used, and the first 369 

five genetic principal components. The parameters of the model were estimated using GCTA 1.9 [36] 370 

The linear model was as follows:  371 

�� ��	
�	 ���� � ��
���
 � �������
� � � � � � ��� � � 

where � and � represent the vectors of fixed effects; and �~��0, �� � !2�# represents the 372 

random effect that models the sample relatedness, with ��  being the � by � matrix of 373 

relatedness estimated from SNPs and �= 10 706 is the number of individuals.  374 

 375 

Genetic correlations with external phenotypes 376 

We computed ��’s between AGGoverall and a set of preselected outcomes (N=46; collectively referred 377 

to as “external phenotypes”; Supplementary Table 14). Phenotypes were selected based on 378 

established hypotheses with AGG and the availability of sufficiently powered GWAS summary 379 

statistics. We restricted ��’s to phenotypes for which the Z-scores of the LDSC-based �����  ≥ 4 [29]. 380 

Next, we estimated ��’s for all rater-specific assessments of AGG (except for father-reported AGG). 381 
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Genomic Structural Equation Modelling (Genomic SEM)[37] was applied to test if ��’s were 382 

significantly different across raters. Specifically, for every phenotype, we tested whether (1) all three 383 

��’s between the external phenotype and rater-specific assessment of AGG, i.e. mother, teacher or 384 

self-ratings, could be constrained at zero, and (2) whether ��’s could be constrained to be equal 385 

across raters. A $� difference test was applied to assess whether imposing the constraints resulted 386 

in a significant worse model fit compared to a model where the ��’s between the phenotype and 387 

three rater-specific assessment of AGG were allowed to differ. We applied an FDR correction at 388 

α=0.05 over two models for 46 external phenotypes, for a total of 92 tests. An FDR correction for 4 x 389 

46=184 tests was applied to correct for multiple testing of whether the genetic correlations were 390 

significantly different from zero. 391 

 392 

Results 393 

Overall GWAMA 394 

We first meta-analyzed the effect of each SNP across all available univariate GWASs. Assuming an 395 

Neff of 151 741, the �����  of AGGoverall was estimated at 3.31% (SE=0.0038). The mean $�-statistic was 396 

1.12 along with an LDSC-intercept of 1.02 (SE=0.01). This indicated that a small, but significant, part 397 

of the inflation in test statistics might have been due to confounding biases, which can either reflect 398 

population stratification or subtle misspecification of sample overlap within cohorts. No genome-399 

wide significant hits were found for AGGoverall (Figure 1). The list of suggestive associations (P<1.0E-05) 400 

is provided in Supplementary Table 15. SNPs were annotated with SNPnexus (see URLs). The 401 

strongest association, in terms of significance, was located on chromosome 2 (rs2570485; P=2.0E-402 

07). The SNP is located inside a gene desert, without any gene in 400Kbp in any direction. The 403 

second strongest independent association was found with rs113599846 (P=4.3E-07), which is 404 

located inside an intronic region of TNRC18 on chromosome 7. None of the suggestive associations 405 

have previously been reported for AGG or AGG-related traits [1]. 406 
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We tested previously reported genome-wide significant associations for AGG [1] and 407 

performed a lookup in AGGoverall. We restricted lookup to associations with autosomal SNPs that 408 

were found in samples of European ancestry, resulting in three loci. One genome-wide significant hit 409 

was reported for adult antisocial personality disorder (rs4714329; OR=0.631; P=1.64E-09)[38]. The 410 

same SNP, however, had an opposite direction of effect in AGGoverall (β=0.0022; P=0.41). Tielbeek et 411 

al [39] reported two genome-wide significant hits for antisocial behavior, one on chromosome 1 412 

(rs2764450) and one on chromosome 11 (rs11215217). While both SNPs have the same direction of 413 

effect, neither SNP is associated with AGGoverall (both P>0.5).  414 

 415 

Gene-based analysis 416 

After correction for multiple testing, the gene-based analysis returned three significant results 417 

(Supplementary Table 16): ST3GAL3 (ST3 beta-galactoside alpha-2,3-sialyltransferase3; P=1.6E-06), 418 

PCDH7 (protocadherin 7; P=2.0E-06) and IPO13 (importin 13; P=2.5E-06). ST3GAL3 codes for a type II 419 

membrane protein that is involved in catalyzing the transfer of sialic acid from CMP-sialic acid to 420 

galactose-containing substrates. ST3GAL3 has been implicated in 107 GWASs, most notably on 421 

intelligence and educational attainment. The top SNP in ST3GAL3 (rs2485997; P=2.48E-06) is in 422 

strong LD (r2>0.8) with several other SNPs inside the gene body of ST3GAL3 and in moderate LD 423 

(r2>0.6) with SNPs in several neighboring genes (Supplementary Figure 3). PCDH7 codes for a protein 424 

that is hypothesized to function in cell-cell recognition and adhesion. PCDH7 has been implicated in 425 

196 previous GWASs, for example educational attainment and adventurousness. The top SNP for 426 

PCDH7 (rs13138213; P=1.44E-06) is in strong LD (r2>0.8) with a small number of other closely located 427 

SNPs and the signal for the gene-based test appears to be driven by two independent loci 428 

(Supplementary Figure 4). IPO13 codes for a nuclear transport protein. IPO13 has been implicated in 429 

the UKB GWASs on whether a person holds a college or university degree and intelligence. The top 430 

                                                           
1

 odds ratio was signed to the other allele in the original study 
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SNP (rs3791116; P=1.19E-05) is in moderate to strong LD with multiple SNPs (Supplementary Figure 431 

5), including SNPs in the neighboring ST3GAL3 gene.  432 

 433 

Polygenic prediction 434 

In children, 11 out of 16 polygenic scores were significantly correlated with mother-reported AGG in 435 

7-year-olds (Figure 2A) after correction for multiple testing. The scores explained between 0.036% 436 

and 0.44% of the phenotypic variance. The significant correlations consistently emerged when 437 

scores including SNPs with P-values above 0.002 in the discovery GWAS were considered. In the 438 

retrospective assessments of adolescent CD, the PGS calculated at various thresholds (Figure 2B) 439 

explained up to 0.2% of the variance in symptom sum scores. Generally, CD is significantly predicted 440 

at most thresholds, although, as we would expect based on the SNP-heritability of AGGoverall, the 441 

proportion of explained variance is small. 442 

 443 

Genetic correlation with external phenotypes 444 

Genetic correlations between AGGoverall and a set of preselected external phenotypes are shown in 445 

Figure 3 and Supplementary Table 17. These phenotypes can broadly be grouped into psychiatric 446 

and psychological traits, substance use, cognitive ability, anthropometric traits, classic biomarkers of 447 

AGG, reproductive traits, and sleeping behavior. We included childhood phenotypes (e.g. birth 448 

weight and childhood IQ) and disorders (e.g. ADHD and autism spectrum disorder [ASD]), but the 449 

majority of phenotypes were adult characteristics or characteristics measured in adult samples. 450 

After correction for multiple testing, 36 phenotypes showed a significant �� with AGGoverall (P<0.02). 451 

In general, the highest positive correlations were seen with psychiatric traits, notably ADHD, ASD, 452 

and major depressive disorder (MDD). The largest negative genetic correlations were found for age 453 

at smoking initiation, childhood IQ, and age at first birth. Based on the biomarker-aggression 454 

literature, we tested for the presence of genetic correlations between AGGoverall, and lipids, heart rate, 455 

heart rate variability, and testosterone levels. Very low genetic correlations were observed for 456 
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AGGoverall, and these biomarkers, with in many cases the sign of the genetic correlation opposite to 457 

what was expected based on the literature on biomarkers of AGG. 458 

 459 

Stratified assessment of childhood aggressive behavior 460 

Separate meta-analyses were carried out for raters, instruments and age. None of these GWAMAs 461 

returned genome-wide significant hits. Manhattan plots for the four rater-specific GWAMAs are 462 

shown in Supplementary Figure 6. Estimates of �����  for rater-specific assessment of AGG are shown 463 

in Supplementary Table 18. The lowest �����  was observed for father-reported AGG (����� =0.04; 464 

SE=0.03) and the highest for teacher-reported AGG (����� =0.08; SE=0.02). We estimated �� between 465 

rater-specific assessment of AGG, except for father-reported AGG, which returned a non-significant 466 

����� . Genetic correlations were 0.67 between AGGMother and AGGSelf (SE=0.10), and 0.81 between 467 

AGGMother and AGGTeacher (SE=0.11), and in both cases significantly lower than 1. A moderate �� was 468 

estimated between AGGSelf and AGGTeacher (��=0.46; SE=0.13).  469 

We performed a GWAMA across all GWASs where an ASEBA scale was used (AGGASEBA) and 470 

another GWAMA across all GWASs for the SDQ (AGGSDQ). SNP-heritabilities for AGGASEBA and AGGSDQ 471 

were 0.031 (SE=0.0099) and 0.026 (SE=0.0086), respectively. The GWAMAs were insufficiently 472 

powered to estimate �� across instrument-specific assessment of AGG. 473 

Age-specific GWAMAs were performed for mother- and self-reported AGG, which made up 474 

77.5% of the data. Mother-reported data were split into seven age-bins and self-reported data into 475 

three (Supplementary Table 12). Estimates of the �����  for each age-specific GWAMA can be found 476 

in Supplementary Table 19. For mother-reported AGG, �����  ranged between 0.012 and 0.078. For 477 

self-reported AGG, the highest �����  was seen for the retrospective data (����� =0.12; SE=0.03), which 478 

also showed a significantly inflated intercept (1.05; SE=0.01). �� could only be estimated between 479 

AGGM7, AGGS13 and AGGSR (Supplementary Table 20).  480 

 481 

Genetic correlation between rater-specific assessment of AGG and external phenotypes 482 
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We estimated rater-specific ��’s with the external phenotypes, except for father-reported AGG, and 483 

tested if these ��’s could be constrained to be equal across mothers, teachers and self-ratings. For 484 

ADHD, ASD, MDD, schizophrenia, well-being, and self-reported health, constraining the ��’s to be 485 

equal across rater resulted in significantly worse model fit (Supplementary Table 21). For all these 486 

phenotypes, ��’s with teacher-reported AGG were consistently lower compared to mother- and self-487 

reported AGG (Supplementary Figure 7 and Supplementary Table 17). For lifetime cannabis use, 488 

genetic correlations also could not be constrained to be equal across raters. Here, a relatively strong 489 

�� was found with self-reported AGG (��=0.36; SE=0.08) compared to teacher- (��=0.13; SE=0.07) and 490 

mother-reported AGG (��=0.08; SE=0.08). 491 

 492 

Discussion 493 

We present the largest genome-wide association meta-analysis (GWAMA) of childhood aggressive 494 

behavior (AGG) to date. The gene-based analysis implicated three genes, PCDH7, ST3GAL3 and IPO13, 495 

based on the overall meta-analysis (AGGoverall), which did not return genome-wide significant SNPs. 496 

Lead SNPs in the implicated genes were related to educational outcomes, but did not reach genome-497 

wide significance and these loci require further evidence before being considered as AGG risk 498 

variants. Polygenic scores (PGS) predicted childhood AGG and retrospectively assessed adolescent 499 

CD. Stratified analyses within AGG generally returned moderate to strong genetic correlations across 500 

raters. We found substantial genetic correlations between AGGoverall and a list of preselected external 501 

phenotypes from various domains, including, psychiatry and psychology, cognition, anthropometric 502 

and reproductive traits. Most notably was the perfect �� between AGGoverall and ADHD (��=1.00; 503 

SE=0.07). This is in line with the moderate-to-strong phenotypic correlations that have consistently 504 

been found across sex-, rater-, age- and instrument-specific assessment of AGG with attention 505 

problems and hyperactivity [15]. Significant genetic correlations were further observed with other 506 

psychiatric and psychological traits (range ����: 0.19 – 0.55). Negative genetic correlations (��=~ -0.5) 507 

were found with all three traits from the cognitive domain. Genetic correlations were positive with 508 
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smoking initiation (��=0.55; SE=0.04) and smoking quantity (��=0.46; SE=0.06), and negative with age 509 

at smoking initiation (��=-0.60; SE=0.09).  510 

We examined genetic correlations with classical biomarkers of aggressive behavior. Higher 511 

levels of aggression have been associated with lower levels of LDL [40] and lower resting heart rate 512 

[41, 42]. We found a positive, albeit weak, �� between AGGoverall and LDL (��=0.15; SE=0.07), which 513 

has an opposite sign than what was expected based on the literature [39]. More broadly, except for 514 

HDL (��=-0.13; SE=0.07), all measures of lipid levels returned significant positive ��’s with AGGoverall, 515 

albeit weakly (��<0.2). No heart rate measure showed a significant genetic correlation with AGGoverall. 516 

The relationship between testosterone levels and (childhood) AGG in the literature is, at best, 517 

unclear. A positive association between AGG and testosterone is often assumed, but the relation 518 

may be more complex [43]. Both positive and negative phenotypic correlations have been found and 519 

seem context-dependent [44]. We found significant negative, ��’s between AGGoverall and 520 

testosterone levels in males and females (����<0.15). These should be interpreted with some caution 521 

because of the design of the GWA studies: AGG was measured in children and young adolescents 522 

whereas testosterone levels were measured in adults in the UK Biobank [45], and genetic stability of 523 

testosterone levels might be low, at least for males [46]. Genetic correlations with reproductive 524 

traits showed a positive relation with having more children (��=0.27; SE=0.08) and having offspring 525 

earlier in life (��=-0.60; SE=0.06), tending to confirm that not all associated outcomes are harmful.  526 

The stratified design of our study also allowed for examination of the genetic etiology of 527 

AGG in subsets of the data and examination of genetic correlations among raters. The �� between 528 

AGGMother and AGGTeacher (��=0.81; SE=0.11) was high, but less than unity, and is in line with previous 529 

findings of rater-specific additive genetic effects in childhood AGG [47]. Most external phenotypes 530 

showed comparable ��’s with mother-, self-, and teacher-reported AGG. For ADHD, ASD, MDD, 531 

schizophrenia, well-being, and self-reported health, ��’s differed significantly across raters. Weaker 532 

��’s were consistently found in teacher-reported AGG compared to mother- and self-reported AGG. 533 

These findings indicate the presence of rater-specific effects when considering the genetic 534 
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correlation of AGG with other outcomes. ��’s are generally stronger in the psychopathology and 535 

psychological domains. A lack of power, however, seems insufficient to explain why we found 536 

weaker ��’s between AGGTeacher and phenotypes from these two domains. Other phenotypes, like 537 

smoking behavior, educational attainment or age at first birth, are, like psychopathological 538 

phenotypes, highly genetically correlated with AGGoverall, but, unlike psychopathologies, have near 539 

identical ��’s across raters. The rater-specific effects on ��’s between childhood AGG and external 540 

phenotypes might be limited to psychopathologies, and future research into the genetics of 541 

childhood psychopathology might consider these nuances in effects of assessment of childhood AGG 542 

from various sources, be that multiple raters, instruments, and ages.  543 

Despite the considerable sample sizes, we were still underpowered to compute genetic 544 

correlations with external phenotypes while stratifying AGG over age or instrument. Age-stratified 545 

GWASs in larger samples across development are a desirable target for future research. Because 546 

genetic correlations can be computed between phenotypes for which a well-powered GWAS is 547 

available, age-stratified GWAS of many developmental phenotypes, behavioral, cognitive and 548 

neuroscientific can be leveraged to better understand development of childhood traits.  549 

We note that multivariate results should be interpreted with some caution. While combining 550 

data from correlated traits can indeed improve power to identify genome-wide associations, 551 

interpreting the phenotype may not be straightforward. In the current GWAMA, we have referred to 552 

our phenotype as “aggressive behavior” and interpreted the results accordingly. Aggressive behavior, 553 

however, is an umbrella term that has been used to identify a wide range of distinct – though 554 

correlated – traits and behaviors [1].  555 

 Genome-wide association studies are increasingly successful in identifying genomic loci for 556 

complex human traits [48] and also in psychiatry, genetic biomarkers are increasingly thought of as 557 

promising for both research and treatment. Genetic risk prediction holds promise for adult 558 

psychiatric disorders [30] and it seems reasonable to expect the same for childhood disorders. Here 559 

we found that polygenic scores explain up to 0.44% of the phenotypic variance in AGG in 7-year-olds 560 
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and 0.2% of the variance in retrospectively reported adolescent CD. Future studies may explore the 561 

utility of these PGSs in illuminating pleiotropy between AGGoverall and other traits. A limiting factor in 562 

this regard is the relatively low SNP-heritability, which puts an upper bound on the predictive 563 

accuracy of PGSs. Since measurement error suppresses SNP-heritability, better measurement may 564 

offer an avenue to higher powered GWAS, and subsequently to better PGS. Furthermore, sample 565 

sizes for developmental phenotypes, including AGG may need to increase by one to two orders of 566 

magnitude before PGS become useful for individual patients.  567 

Despite our extensive effort, the first genome-wide significant SNP for childhood AGG has 568 

yet to be found. Even in the absence of genome-wide significant loci, however, GWASs aid in 569 

clarifying the biology behind complex traits. Our results show that, even without genome-wide 570 

significant hits, a GWAS can be powerful enough to illuminate the genetic etiology of a trait in the 571 

form of ��’s with other complex traits. Non-significant associations are expected to capture part of 572 

the polygenicity of a trait [31] and various follow up-analyses have been developed for GWASs that 573 

do not require, but are aided by, genome-wide significant hits [49]. Polygenic scores aggregate SNP 574 

effects into a weighted sum that indicates a person’s genetic liability to develop a disorder. While 575 

their clinical application is still limited in psychiatric disorders, they can already aid in understanding 576 

the pleiotropy among psychiatric and other traits [30]. Similarly, summary statistics-based genetic 577 

correlations (��) provide insight into the genetic overlap between complex traits [29, 50].  578 

  579 
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URLs 580 

MAGMA: https://ctg.cncr.nl/software/magma 581 

SNPnexus: https://www.snp-nexus.org/index.html (accessed on 28-8-2019) 582 

GWAS Catalog: https://www.ebi.ac.uk/gwas/ (accessed on 29-8-2019) 583 
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Figures 735 

 736 

Figure 1. Manhattan plot of overall meta-analysis for childhood aggression (AGGoverall). Red triangles 737 

represent SNPs that were included in the significant genes from the gene-based analysis. SNPs for 738 

ST3GAL3 and IPO13 are included in the same locus on chromosome 1. 739 

 740 

Figure 2A. Proportion of explained variance (vertical axis) in childhood aggression at age 7 by 741 

polygenic scores from the overall GWAMA for multiple P-value thresholds (horizontal axis). Asterisks 742 

indicate scores with a significant beta after FDR correction for multiple testing at α=0.05 for 16 tests.  743 

 744 

Figure 2B. Proportion of explained variance (vertical axis) in retrospective adolescent CD (two sided 745 

tests). Blue bars indicate positive correlation with the conduct disorder score. 746 

 747 

Figure 3. Genetic correlation with external phenotypes. Phenotypes are ordered by domain. Bars 748 

indicate 95% confidence intervals. 749 

 750 

  751 
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Table 752 

Table 1. (a) multivariate test statistic in the meta-analysis of results based on overlapping samples. 753 

(b) expected value for the cross-trait-intercept. (c) Effective sample size for a GWAMA.  754 
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(a)  

 

Multivariate test-statistic for 2-th SNP. � is 

the number of GWASs across which we run 

the meta-analysis; )�
 � *��
����,
�  is the 

weight given to the 2th SNP in GWAS �, with 

����,
�  being the SNP-heritability of the trait 

analyzed in GWAS �; and +�
 � 1 represents 

the variance of the distribution of '�
 under 

the null hypothesis of no effect. 
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,��
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(b)  

 

Cross-trait-intercept between GWAS � and 

1. �� represents the sample overlap; �� 

indicates the phenotypic correlation; ��
  
and ��� are the sample sizes at SNP 2 for 

respectively GWASs � and 1 

 

���� � √���-.��√� (c)  

 

� is an �-sized vector of sample sizes, and 

�-. is the � x � matrix of cross-trait-

intercepts. 
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