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Since functional MRI (fMRI) was introduced in 1992, 
scientists have had unprecedented ability to noninvasively 
observe human brain activity. In conventional fMRI, 
regional brain activity is estimated by measuring the 
blood-oxygen-level-dependent (BOLD) signal, which 
indexes changes in blood oxygenation associated with 
neural activity (Logothetis, Pauls, Augath, Trinath, & 
Oeltermann, 2001). In one of the most common forms 
of BOLD fMRI, researchers map brain activity associated 
with specific cognitive functions during certain tasks by 
contrasting the regional BOLD signal during a control 
condition with the BOLD signal during a condition of 

interest. In this way, task fMRI has given neuroscientists 
unique insights into the brain basis of human behavior, 
from basic perception to complex thought, and has given 
clinicians and mental-health researchers the opportunity 
to directly measure dysfunction in the organ responsible 
for disorder.
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Abstract
Identifying brain biomarkers of disease risk is a growing priority in neuroscience. The ability to identify meaningful 
biomarkers is limited by measurement reliability; unreliable measures are unsuitable for predicting clinical outcomes. 
Measuring brain activity using task functional MRI (fMRI) is a major focus of biomarker development; however, the 
reliability of task fMRI has not been systematically evaluated. We present converging evidence demonstrating poor 
reliability of task-fMRI measures. First, a meta-analysis of 90 experiments (N = 1,008) revealed poor overall reliability—
mean intraclass correlation coefficient (ICC) = .397. Second, the test-retest reliabilities of activity in a priori regions of 
interest across 11 common fMRI tasks collected by the Human Connectome Project (N = 45) and the Dunedin Study 
(N = 20) were poor (ICCs = .067–.485). Collectively, these findings demonstrate that common task-fMRI measures are 
not currently suitable for brain biomarker discovery or for individual-differences research. We review how this state of 
affairs came to be and highlight avenues for improving task-fMRI reliability.
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Originally, task fMRI was primarily used to study func-
tions supported by the average human brain. Researchers 
could measure within-subjects differences in activation 
between task and control conditions and average them 
across individuals to measure a group effect. To this end, 
fMRI tasks have been developed and optimized to elicit 
robust activation in a particular brain region of interest 
(ROI) or circuit when specific experimental conditions 
are contrasted. For example, increased amygdala activity 
is observed when people view emotional faces in com-
parison with geometric shapes, and increased ventral 
striatum activity is observed when people win money in 
comparison with when they lose it (Barch et al., 2013). 
The robust brain activity elicited using this within-
subjects approach led researchers to use the same fMRI 
tasks to study between-subjects differences. The logic 
behind this strategy is straightforward: If a brain region 
activates during a task, then individual differences in the 
magnitude of that activation may contribute to individual 
differences in behavior as well as to any associated risk 
for disorder. Thus, if the amygdala is activated when 
people view threatening stimuli, then differences between 
people in the degree of amygdala activation should signal 

differences between them in threat sensitivity and related 
clinical phenomena, such as anxiety and depression 
(Swartz, Knodt, Radtke, & Hariri, 2015). In this way, fMRI 
was transformed from a tool for understanding how the 
average brain works to a tool for studying how the 
brains of individuals differ.

The use of task fMRI to study differences between 
people heralded the possibility that it could be a pow-
erful tool for discovering biomarkers for brain disorders 
(Woo, Chang, Lindquist, & Wager, 2017). Broadly, a 
biomarker is a biological indicator often used for risk 
stratification, diagnosis, prognosis, and evaluation of 
treatment response. However, to be useful as a bio-
marker, an indicator must first be reliable. Reliability is 
the ability of a measure to give consistent results under 
similar circumstances. It puts a limit on the predictive 
utility, power, and validity of any measure (see Appendix 
and Fig. 1). Consequently, reliability is critical for both 
clinical applications and research practice. Measures 
with low reliability are unsuitable as biomarkers and 
cannot predict clinical health outcomes. That is, if a 
measure is going to be used by clinicians to predict the 
likelihood that a patient will develop an illness in the 
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Fig. 1. The influence of task-functional MRI (fMRI) test-retest reliability on the sample size required for 80% power to detect brain–behavior 
correlations of effect sizes commonly found in psychological research. Power curves are shown for three levels of reliability of the associated 
behavioral or clinical phenotype. The figure was generated using the pwr.r.test function in R (Champely, 2018), with the value for r specified 
according to the attenuation formula in the Appendix. ICC = intraclass correlation coefficient.
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future, then the patient cannot score randomly high on 
the measure at one assessment and low on the measure 
at the next assessment.

To progress toward a cumulative neuroscience of 
individual differences with clinical relevance, we must 
establish reliable brain measures. Although the reli-
ability of task fMRI has previously been discussed (Ben-
nett & Miller, 2010; Herting, Gautam, Chen, Mezher, & 
Vetter, 2018), individual studies provide highly variable 
estimates and often contain small test-retest samples 
and a wide variety of analytic methods. In addition, the 
authors of those studies may reach contradictory con-
clusions about the reliability of the same tasks (Manuck, 
Brown, Forbes, & Hariri, 2007; Nord, Gray, Charpentier, 
Robinson, & Roiser, 2017). This leaves the overall reli-
ability of task fMRI, as well as the specific reliabilities 
of many of the most commonly used fMRI tasks, largely 
unknown. An up-to-date, comprehensive review and 
meta-analysis of the reliability of task fMRI and an in-
depth examination of the reliability of the most widely 
used task-fMRI measures is needed. Here, we present 
evidence from two lines of analysis that point to the poor 
reliability of commonly used task-fMRI measures. First, 
we conducted a meta-analysis of the test-retest reliability 
of regional activation in task fMRI. Second, in two recently 
collected data sets, we analyzed the test-retest reliability 
of brain activation in a priori ROIs across several com-
monly used fMRI tasks (our design and analysis plans 
were posted prior to data analysis at https://sites.google 
.com/site/moffittcaspiprojects/home/projectlist/
knodt_2019).

Method

Meta-analytic reliability of task fMRI

We performed a systematic review and meta-analysis fol-
lowing Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses (PRISMA) guidelines (see Fig. S1 in 
the Supplemental Material available online). We searched 
Google Scholar for peer-reviewed articles written in Eng-
lish and published on or before April 1, 2019, that 
included test-retest reliability estimates of task-fMRI acti-
vation. We used the advanced search tool to find articles 
that included all of the terms “ICC” (i.e., intraclass correla-
tion coefficient), “fMRI,” and “retest” and at least one of 
the terms “ROI,” “ROIs,” “region of interest,” or “regions 
of interest.” This search yielded 1,170 articles.

Study selection and data extraction. One author (M. 
L. Morris) screened all titles and abstracts before the full 
texts were reviewed (by authors M. L. Elliott and A. R. 
Knodt). We included all original, peer-reviewed empirical 

articles that reported test-retest reliability estimates for 
activation during a BOLD fMRI task. All ICCs reported in 
the main text and the Supplemental Material were eligi-
ble for inclusion. If ICCs were depicted only graphically 
(e.g., in a bar graph), we did our best to judge the value 
from the graph. Voxelwise ICCs that were depicted only 
on brain maps were not included. For ICCs calculated on 
the basis of more than 2 time points, we used the average 
of the intervals as the value for the interval (e.g., the aver-
age of the time between Time Points 1 and 2 and Time 
Points 2 and 3 for an ICC based on three time points). For 
articles that reported ICCs from sensitivity analyses in 
addition to primary analyses on the same data (e.g. using 
different modeling strategies or excluding certain individu-
als) we included ICCs from only the primary analysis. We 
did not include ICCs from combinations of tasks. ICCs 
were excluded if they were from a longitudinal or inter-
vention study that was designed to assess change, if they 
did not report ICCs based on measurements from the 
same MRI scanner or task, or if they reported reliability on 
something other than activation measures across individu-
als (e.g., spatial extent of activation or multivoxel patterns 
of activation within individuals).

Two authors (M. L. Elliott and A. R. Knodt) extracted 
data about sample characteristics (publication year, sam-
ple size, healthy vs. clinical), study design (test-retest 
interval, event-related vs. blocked, task length, and task 
type), and ICC reporting (thresholded vs. not thresh-
olded). Thresholding occurs when studies calculate mul-
tiple ICCs but only report values above a minimum 
threshold. For each article, every reported ICC that met 
the above study-selection requirements was recorded.

Statistical analyses. For most of the studies included, 
no standard error or confidence interval (CI) for the ICC 
was reported. Therefore, in order to include as many esti-
mates as possible in the meta-analysis, the standard error 
of all ICCs was estimated using the Fisher r-to-Z transfor-
mation for ICC values (Chen et al., 2018).

A random-effects multilevel meta-analytic model was 
fitted using tools from the metafor package in R (see 
Edlund & Nichols, 2019, appendix A). In this model, ICCs 
and standard errors were averaged within each unique 
sample, task, and test-retest interval (or substudy) was 
averaged within each article or study (Borenstein, 
Hedges, Higgins, & Rothstein, 2009). For the results 
reported here, the correlation between ICCs in each 
substudy was assumed to be 1 to ensure that the meta-
analytic weight for each substudy was based solely on 
sample size rather than the number of ICCs reported. 
However, sensitivity analyses revealed that this decision 
had very little impact on the overall result (see Fig. S2 
in the Supplemental Material). In the meta-analytic 

https://sites.google.com/site/moffittcaspiprojects/home/projectlist/knodt_2019
https://sites.google.com/site/moffittcaspiprojects/home/projectlist/knodt_2019
https://sites.google.com/site/moffittcaspiprojects/home/projectlist/knodt_2019
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model, substudies were nested within studies to account 
for the nonindependence of ICCs estimated within the 
same study. Meta-analytic summaries were estimated 
separately for substudies that reported ICC values that 
had been thresholded because of the documented spu-
rious inflation of effect sizes that occurs when only 
statistically significant estimates are reported (Poldrack 
et al., 2017; Vul, Harris, Winkielman, & Pashler, 2009; 
Yarkoni, 2009).

To test for effects of moderators, we fitted a separate 
random-effects multilevel model to all 1,146 ICCs (i.e., 
without averaging within each substudy, because many 
substudies included ICCs with different values for one 
or more moderators). The moderators included were 
task length, task design (block vs. event-related), task 
type (e.g., emotion vs. executive control vs. reward), 
ROI type (e.g., structural or functional), ROI location 
(cortical vs. subcortical), sample type (healthy vs. clini-
cal), retest interval, number of citations per year, and 
whether ICCs were thresholded on significance (see 
Table S1 in the Supplemental Material for descriptive 
statistics on all moderators tested). All moderators were 
simultaneously entered into the model as random 
effects. In the multilevel model, ICCs were nested 
within substudies, which were in turn nested within 
studies. This was done to account for the nonindepen-
dence of ICCs estimated within the same substudy, as 
well as the nonindependence of substudies conducted 
within the same study.

Analyses of new data sets

Human Connectome Project (HCP). The HCP is a 
publicly available data set that includes 1,206 participants 
with extensive structural and fMRI data (Van Essen et al., 
2013). In addition, 45 participants completed the entire 
scan protocol a second time (with a mean interval between 
scans of approximately 140 days). All participants were 
free of current psychiatric or neurologic illness and were 
between 25 and 35 years of age.

The seven tasks employed in the HCP were designed 
to identify functionally relevant nodes in the brain. 
These tasks included an n-back working memory/
executive-function task (targeting the dorsolateral pre-
frontal cortex, or dlPFC); a gambling-reward/incentive-
processing task (targeting the ventral striatum); a motor- 
mapping task consisting of foot, hand, and tongue 
movements (targeting the motor cortex); an auditory 
language task (targeting the anterior temporal lobe); a 
social-cognition/theory-of-mind task (targeting the lateral 
fusiform gyrus, superior temporal sulcus, and other social-
network regions); a relational-processing/dimensional-
change-detection task (targeting the rostrolateral prefrontal 

cortex, or rlPFC); and a face-matching emotion-processing 
task (targeting the amygdala).

Dunedin Multidisciplinary Health and Develop-
ment Study. The Dunedin Study is a longitudinal inves-
tigation of health and behavior in a complete birth cohort 
of 1,037 individuals (91% of eligible births; 52% male) 
born between April 1972 and March 1973 in Dunedin, 
New Zealand, and followed to age 45 years (Poulton, 
Moffitt, & Silva, 2015). Structural and functional neuroim-
aging data were collected between August 2016 and April 
2019, when participants were 45 years old. In addition, 
20 study members completed the entire scan protocol a 
second time (mean interval between scans = 79 days).

We collected fMRI during four tasks targeting neural 
hubs in four different domains: a face-matching emotion-
processing task (targeting the amygdala), a Stroop 
executive-function task (targeting the dlPFC and the 
dorsal anterior cingulate cortex), a monetary-incentive 
delay-reward task (targeting the ventral striatum), and 
a face-name-encoding episodic-memory task (targeting 
the hippocampus). See Supplemental Methods in the 
Supplemental Material for additional details, including 
fMRI preprocessing, for both data sets.

ROI definition. Individual estimates of regional brain 
activity were extracted using two common approaches. 
First, we extracted average values from a priori anatomi-
cally defined regions. We identified the primary ROI for 
each task and extracted average BOLD signal-change 
estimates from all voxels within a corresponding bilateral 
anatomical mask.

Second, we used functionally defined regions based 
on group-level activation. Here, we generated func-
tional ROIs by drawing 5-mm spheres around the 
group-level peak voxel within the target anatomical ROI 
for each task (across all individuals and sessions). This 
is a commonly used strategy for capturing the location 
of peak activation in each subject despite intersubject 
variability in the exact location of the activation. See 
the Supplemental Material for further details on ROI 
definition, overlays on the anatomical template (Fig. 
S3), and peak-voxel location (Table S2). Here, we report 
analyses based on anatomically defined ROIs, and we 
report sensitivity analyses based on functional ROIs in 
the Supplemental Material.

Reliability analysis. Subject-level BOLD signal-change 
estimates were extracted for each task, ROI, and scanning 
session. Reliability was quantified using a two-way mixed-
effects ICC with session modeled as a fixed effect, subject 
as a random effect, and test-retest interval as an effect of no 
interest. This mixed-effects model is referred to as ICC (3,1) 
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by Shrout and Fleiss (1979) and defined as ICC (3,1) = 
(BMS − EMS)/(BMS + (k − 1) × EMS), where BMS repre-
sents between-subjects mean square, EMS represents 
error mean square, and k is the number of raters or scan-
ning sessions (in this case, two). We note that ICC (3,1) 
tracks the consistency of measures between sessions rather 
than absolute agreement and that it is commonly used in 
studies of task-fMRI test-retest reliability because of the 
possibility of habituation to the stimuli over time.

To test reliability for each task more generally, we 
calculated ICCs for all target ROIs across all 11 tasks. 
Because three of the tasks (the emotion, reward, and 
executive-function tasks) were very similar across the 
HCP and Dunedin studies and targeted the same region, 
the same ROI was used for these tasks in both studies, 
resulting in a total of eight unique target ROIs assessed 
for reliability. To further visualize global patterns of 
reliability, we also calculated voxelwise maps of ICC 
(3,1) using the 3dICC_REML.R function from Analysis 
of Functional NeuroImages (AFNI) software (Chen, 
Saad, Britton, Pine, & Cox, 2013). Finally, to provide a 
benchmark for evaluating task-fMRI reliability, we 
determined the test-retest reliability of three commonly 
used structural MRI measures: cortical thickness and 
surface area for each of 360 parcels or ROIs (Glasser 
et  al., 2016), as well as gray-matter volume for 17 

subcortical structures. Code and data for this study are 
available at github.com/HaririLab/Publications/tree/
master/ElliottKnodt2020PS_tfMRIReliability.

Results

Reliability of individual differences 
in task fMRI: a systematic review and 
meta-analysis

We identified 56 articles meeting the criteria for inclu-
sion in the meta-analysis, yielding 1,146 ICC estimates 
derived from 1,088 unique participants across 90 dis-
tinct substudies employing 66 different task-fMRI para-
digms (Fig. 2). These articles were cited a total of 2,686 
times, with an average of 48 citations per article and 
5.7 citations per article per year. During the study-
selection process, we discovered that some researchers 
calculated many different ICCs (across multiple ROIs, 
contrasts, and tasks) but reported only a subset of the 
estimated ICCs that were either statistically significant 
or reached a minimum ICC threshold. This practice 
leads to inflated reliability estimates (Kriegeskorte, 
Lindquist, Nichols, Poldrack, & Vul, 2010; Poldrack 
et al., 2017). Therefore, we performed separate analyses 
of data from unthresholded and thresholded reports.

Records Found via Database Search
(Database: Google Scholar)

(N = 1,170)

Remaining Records After Screening
by Title and Abstract

 (n = 121)

Records Excluded  (n = 1,049)

Remaining Studies After Full-Text
Articles Assessed

 (n = 56)

Studies Included in Meta-Analysis
 (n = 56)

Full-Text Articles Excluded (n = 65)
   • Did Not Report Reliability for Task fMRI Test-Retest Data (n = 23)
   • Reliability Calculated Within Individuals or Not Using ICC (n = 18)
   • Longitudinal Studies or Studies Specifically Focused on Change (n = 8)
   • ICCs Reported Only on Brain Maps or Categorically (n = 8)
   • Retest Not Exact Same Scanner or Paradigm (n = 5)
   • Only Resting-State Reliabilities (n = 3)

Fig. 2. Flow diagram for the systematic literature review and meta-analysis.

http://www.github.com/HaririLab/Publications/tree/master/ElliottKnodt2020PS_tfMRIReliability
http://www.github.com/HaririLab/Publications/tree/master/ElliottKnodt2020PS_tfMRIReliability
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Fig. 3. (continued on next page)
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Fig. 3. Meta-analysis forest plot displaying the estimate of test-retest reliability for each task-functional MRI (fMRI) measure from all intra-
class correlation coefficients (ICCs) reported in each study. The first column labels each article by the first author’s last name and year of 
publication. References for all articles listed here are provided in the Supplemental Material available online. In the subject-type column, 
“h” indicates that the sample in the study consisted of healthy controls, and “c” indicates a clinical sample. Studies are split into two sub-
groups. In the first group of studies, authors reported all ICCs that were calculated, thereby allowing for a relatively unbiased estimate of 
reliability. In the second group of studies, authors selected a subset of calculated ICCs (on the basis of the magnitude of the ICC or another 
nonindependent statistic) and then reported ICCs only from that subset. This practice led to inflated reliability estimates, and therefore these 
studies were meta-analyzed separately to highlight this bias. Error bars indicate 95% confidence intervals (CIs). MID = monetary incentive 
delay; LH = left hand, RH = right hand.

Figure 3 shows the test-retest reliability coefficients 
(ICCs) from 77 substudies reporting unthresholded values 
(average N = 19.6, median N = 17). Fifty-six percent of 
the values fell in the range of poor reliability (below .4), 
an additional 24% of the values fell in the range of fair 
reliability (.4–.6), and only 20% fell in the range of good 
or excellent reliability (above .75). A random-effects 
meta-analysis revealed an average ICC of .397 (95% CI = 
[.330–.460], p < .001), which is in the poor range (Cicchetti 
& Sparrow, 1981). There was evidence of between-studies 
heterogeneity (p = .04, I2 = 31.6).

As expected, the meta-analysis of 13 substudies that 
reported ICCs only above a minimum threshold (aver-
age N = 24.2, median N = 18) revealed a higher meta-
analytic ICC of .705 (95% CI = [.628–.768], p < .001,  
I 2 = 17.9). This estimate, which is 1.78 times the size 
of the estimate from unthresholded ICCs, is in the good 
range, suggesting that the practice of thresholding 
inflates estimates of reliability in task fMRI. There was 
no evidence of between-studies heterogeneity (p = .54, 
I 2 = 17.9).

A moderator analysis of all substudies revealed sig-
nificantly higher reliability for studies that were thres-
holded on the basis of the ICC, QM(1) = 6.531, p = .010, 
β = 0.140. In addition, ROIs located in the cortex had 
significantly higher ICCs than those located in the sub-
cortex, QM(1) = 114.476, p < .001, β = 0.259. However, 
we did not find evidence that the meta-analytic estimate 
was moderated by task type, task design, task length, 
test-retest interval, ROI type, sample type, or number 
of citations per year. Finally, we tested for publication 
bias using the Egger random-effects regression test 

(Egger, Davey Smith, Schneider, & Minder, 1997) and 
found no evidence of bias (Z = .707, p = .480).

The results of the meta-analysis were illuminating, 
but interpreting them was not simple. First, the reliability 
estimates came from a wide array of tasks and samples, 
so a single meta-analytical reliability estimate could 
obscure truly reliable task-fMRI paradigms. Second, the 
studies used different (and some now outdated) scan-
ners and different preprocessing and analysis pipelines, 
leaving open the possibility that reliability would be 
improved with more advanced technology and consis-
tent practices. To address these limitations and possibili-
ties, we analyzed two new data sets using state-of-the-art 
scanners and practices to assess individual differences 
in commonly used tasks that tap a variety of cognitive 
and affective functions.

Reliability of individual differences in 
task fMRI: analyses in two new data sets

We evaluated test-retest reliabilities of activation in a 
priori ROIs for 11 commonly used fMRI tasks (see the 
Method section). In the HCP, 45 participants were 
scanned twice using a custom 3T scanner (Siemens, 
Munich, Germany), 140 days apart on average (SD = 
67.1 days), using seven tasks targeting emotion, reward, 
executive function, motor, language, social cognition, 
and relational processing. This sample size was deter-
mined by the publicly available data in the HCP. In the 
Dunedin Study, 20 participants were scanned twice using 
a 3T Siemens Skyra, 79 days apart on average (SD = 10.3 
days), using four tasks targeting emotion, reward, 
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executive control, and episodic memory. This sample 
size corresponds to the average sample size used in the 
meta-analyzed studies. Three of the tasks were similar 
across the two studies, allowing us to test the replicabil-
ity of task-fMRI reliabilities. For each of the eight unique 
tasks across the two studies, we identified the task’s 
primary target region, resulting in a total of eight a 
priori ROIs (see the Method section).

Group-level activation. To ensure that the 11 tasks 
were implemented and processed correctly, we calcu-
lated the group-level activation in the target ROIs using 
the primary contrast of interest for each task (see Supple-
mental Methods in the Supplemental Material for details). 
These analyses revealed that each task elicited the 
expected robust activation in the target ROI at the group 
level (i.e., across all participants and sessions; see warm-
colored maps in Figure 4 for the three tasks in common 
between the two studies and Fig. S4 in the Supplemental 
Material for the remaining tasks).

Reliability of regional activation. We investigated 
the reliability of task activation in both data sets using four 
steps. First, we tested the reliability of activation in the 
target ROI for each task. Second, we evaluated the reli-
ability of activation in the other seven a priori ROIs for 
each task. This was done to test whether the reliability of 
target ROIs was higher than the reliability of activation in 
other (nontarget) brain regions and to identify any tasks 
or regions with consistently high reliability. Third, we 
reestimated reliability using activation in the left and right 
hemispheres separately to test whether the estimated reli-
ability was harmed by averaging across the hemispheres. 
Fourth, we tested whether the reliability depended on 
whether ROIs were defined structurally (i.e., using an 
anatomical atlas) or functionally (i.e., using a set of voxels 
based on the location of peak activity). See Figure S5 in 
the Supplemental Material for ICCs of behavior during 
each fMRI task.

Reliability of regional activation in the HCP. First, 
as shown by the estimates circled in black in Figure 5, acti-
vation in anatomically defined target ROIs in the HCP had 
low reliability across the seven fMRI tasks (mean ICC = 
.251, 95% CI = [.142–.360]). Only the language-processing 
task had greater than poor reliability (ICC = .485). None 
of the reliabilities entered the good range (ICC > .6). Sec-
ond, the reliability of task activation in nontarget ROIs 
was also low (Fig. 5; mean ICC = .239, 95% CI = [.188–
.289]) but not significantly lower than the reliability in 
target ROIs (p = .474).

Third, the reliability of task activation calculated 
from left and right ROIs separately resembled estimates 
from averaged ROIs (mean left ICC = .207 in target ROIs 

and .196 in nontarget ROIs, mean right ICC = .259 in 
target ROIs and .236 in nontarget ROIs; see Fig. S6 in 
the Supplemental Material). Fourth, the reliability of 
task activation in functionally defined ROIs was also 
low (mean ICC = .381, 95% CI = [.317–.446]), with only 
the motor and social tasks exhibiting ICCs greater than 
.4 (ICCs = .550 and .446, respectively; see Fig. S6).

As an additional step, to account for the family struc-
ture present in the HCP, we reestimated reliability after 
removing one of each sibling/twin pair in the test-
retest sample. Reliability in bilateral anatomical ROIs 
in the subsample of 26 unrelated individuals yielded 
reliabilities very similar to those in the overall sample 
(mean ICC = .301 in target ROIs and .218 in nontarget 
ROIs; Fig. S6).

Reliability of regional activation in the Dunedin 
Study. First, as shown by the estimates circled in black 
in Figure 5, activation in the anatomically defined target 
ROI in the Dunedin Study for each of the four tasks had 
low reliability (mean ICC = .309, 95% CI = [.145–.472]), 
with no ICCs reaching the good range (ICC > .6). Second, 
the reliability of activation in the nontarget ROIs was also 
low (Fig. 5; mean ICC = .193, 95% CI = [.100–.286]), but 
not significantly lower than the reliability in target ROIs 
(p = .140). Third, the reliability of task activation calcu-
lated for the left and right hemispheres separately was 
similar to the reliability in the averaged ROIs (mean left 
ICC = .243 in target ROIs and .202 in nontarget ROIs, 
mean right ICC = .358 in target ROIs and .192 in nontarget 
ROIs; see Fig. S6). Fourth, functionally defined ROIs again 
did not meaningfully improve reliability (mean ICC = 
.325, 95% CI = [.197–.453]; see Fig. S6).

Reliability of structural measures. To provide a 
benchmark for evaluating the test-retest reliability of task 
fMRI, we investigated the reliability of three commonly 
used structural MRI measures: cortical thickness, surface 
area, and subcortical gray-matter volume. Consistent with 
prior evidence (Han et al., 2006) that structural MRI phe-
notypes have excellent reliability (i.e., ICCs > .9), our 
results showed that global and regional structural MRI 
measures in the present samples demonstrated very high 
test-retest reliabilities (Fig. 5). For average cortical thick-
ness, ICCs were .953 and .939 in the HCP and Dunedin 
Study data sets, respectively. In the HCP, parcel-wise (i.e., 
regional) cortical-thickness reliabilities averaged .886 
(range = .547–.964), with 100% above the fair threshold, 
98.6% above the good threshold, and 94.2% above the 
excellent threshold. In the Dunedin Study, parcel-wise 
cortical-thickness reliabilities averaged .846 (range = 
.385–.975), with 99.7% of ICCs above the fair threshold, 
96.4% above the good threshold, and 84.7% above the 
excellent threshold. For total surface area, ICCs were .999 
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Fig. 4. Whole-brain activation and reliability maps for three task-functional MRI measures used in both the Human Connectome Project and 
the Dunedin Study. For each task, a whole-brain activation map of the primary within-subjects contrast (t score) is displayed in warm colors 
(top), and a whole-brain map of the between-subjects reliability (intraclass correlation coefficient, or ICC) is shown in cool colors (bottom). 
For each task, the target region of interest is outlined in sky blue. The activation maps are thresholded at p < .05 and are whole-brain cor-
rected for multiple comparisons using threshold-free cluster enhancement. The ICC maps are thresholded so that voxels with ICCs of less 
than .4 are not colored. Values for X, Y, and Z are given in Montreal Neurological Institute coordinates.

and .996 in the HCP and Dunedin Study data sets, respec-
tively. In the HCP, parcel-wise surface-area ICCs averaged 
.937 (range = .526–.992), with 100% above the fair thresh-
old, 98.9% above the good threshold, and 96.9% above 
the excellent threshold. In the Dunedin Study, surface-
area ICCs averaged .942 (range = .572–.991), with 100% 

above the fair threshold, 99.7% above the good thresh-
old, and 98.1% above the excellent threshold. For subcor-
tical volumes, ICCs in the HCP averaged .903 (range = 
.791–.984), with all ICCs above the excellent threshold. In 
the Dunedin Study, subcortical volumes averaged .931 
(range = .767–.979), with all ICCs above the excellent 
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Fig. 5. Test-retest reliabilities of region-wise activation measures in 11 commonly used task-functional MRI paradigms and three common 
structural MRI measures, separately for the Human Connectome Project (left) and the Dunedin Study (right). For each task, intraclass cor-
relation coefficients (ICCs) were estimated for activation in the a priori target region of interest (ROI; circled in black) and in nontarget 
ROIs selected from the other tasks. Nontarget ROIs were the anterior temporal lobe (ATL), dorsolateral prefrontal cortex (dlPFC), precen-
tral gyrus (PCG), rostrolateral prefrontal cortex (rlPFC), and ventral striatum (VS). As a benchmark, ICCs of three common structural MRI 
measures—cortical thickness (CT), surface area (SA), and subcortical volume—are depicted as violin plots representing the distribution 
of ICCs for each of the 360 parcels for CT and SA and the 17 subcortical structures for gray-matter volume. Negative ICCs are set to 0 for 
purposes of visualization. EF = executive function.

threshold. See Table S3 in the Supplemental Material for 
an evaluation of the reliabilities of each subcortical region.

Discussion

We found evidence that commonly used task-fMRI mea-
sures generally do not have the test-retest reliability 
necessary for biomarker discovery or brain–behavior 
mapping. Our meta-analysis of task-fMRI reliability 
revealed an average test-retest reliability coefficient of 
.397, which is below the minimum required for good 
reliability (ICC = .6; Cicchetti & Sparrow, 1981) and far 
below the recommended cutoffs for clinical application 
(ICC = .8) or individual-level interpretation (ICC = .9). 
Of course, not all task-fMRI measures are the same, and 
it is not possible to assign a single reliability estimate 
to all individual-differences measures gathered in fMRI 
research. However, we found little evidence that task 
type, task length, or test-retest interval had an appre-
ciable impact on the reliability of task fMRI.

We additionally evaluated the reliability of 11 com-
monly used task-fMRI measures in the HCP and the 
Dunedin Study. Unlike many of the studies included in 
our meta-analysis, these two studies were completed 
recently on modern scanners using cutting-edge acqui-
sition parameters, up-to-date artifact reduction, and 
state-of-the-art preprocessing pipelines. Regardless, the 

average test-retest reliability was again poor (ICC = 
.228). In these analyses, we found no evidence that 
ROIs targeted by the task were more reliable than other, 
nontarget ROIs (mean ICC = .270 for target ROIs and 
.228 for nontarget ROIs) or that any specific task or 
target ROI consistently produced measures with high 
reliability. Of interest, the reliability estimate from these 
two studies was considerably smaller than the estimate 
from the meta-analysis (meta-analytic ICC = .397), pos-
sibly because preregistered analyses often yield smaller 
effect sizes than do analyses from publications without 
preregistration, which affords increased flexibility in 
analytic decision-making (Schäfer & Schwarz, 2019).

The two disciplines of fMRI research

Our results harken back to Lee Cronbach’s classic 1957 
article in which he described the “two disciplines of 
scientific psychology.” According to Cronbach, the 
experimental discipline strives to uncover universal 
human traits and abilities through experimental control 
and group averaging, whereas the correlational disci-
pline strives to explain variation between people by 
measuring how they differ from one another. A funda-
mental distinction between the two disciplines is how 
they treat individual differences. For the experimental 
researcher, variation between people is an error that 
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must be minimized to detect the largest experimental 
effect. For the correlational investigator, variation 
between people is the primary unit of analysis and must 
be measured carefully to extract reliable individual dif-
ferences (Cronbach, 1957; Hedge, Powell, & Sumner, 
2018).

Current task-fMRI paradigms are largely descended 
from the experimental discipline. Task-fMRI paradigms 
are intentionally designed to reveal how the average 
human brain responds to provocation, while minimiz-
ing between-subjects variance. Paradigms that are able 
to elicit robust targeted brain activity at the group level 
are subsequently converted into tools for assessing indi-
vidual differences. Within-subjects robustness is, then, 
often inappropriately invoked to suggest between-
subjects reliability, despite the fact that reliable within-
subjects experimental effects at a group level can arise 
from unreliable between-subjects measurements (Fröhner, 
Teckentrup, Smolka, & Kroemer, 2019).

This reasoning is not unique to task-fMRI research. 
Behavioral measures that elicit robust within-subjects 
(i.e., group) effects have been shown to have low 
between-subjects reliability; for example, the mean test-
retest reliability of the Stroop test (ICC = .45; Hedge 
et al., 2018) is strikingly similar to the mean reliability 
of our task-fMRI meta-analysis (ICC = .397). Nor is it 
the case that MRI measures, or even the BOLD signal 
itself, are inherently unreliable. Both structural MRI 
measures in our analyses (see Fig. 5), as well as mea-
sures of intrinsic functional connectivity estimated from 
long fMRI scans (Elliott et al., 2019; Gratton et al., 2018), 
demonstrate high test-retest reliability. Thus, it is not 
the tool that is problematic but the strategy of adopting 
tasks developed for experimental cognitive neurosci-
ence that appear to be poorly suited for reliably mea-
suring differences in brain activation between people.

Recommendations and future directions

We next consider several avenues for maximizing the 
value of existing data sets as well as improving the 
reliability of task fMRI moving forward. We begin with 
two recommendations that can be implemented imme-
diately before moving on to two recommendations that 
will require additional data collection and innovation.

Immediate opportunities for task fMRI: from brain 
hot spots to whole-brain signatures. Currently, the 
majority of task-fMRI measures are based on contrasts 
between conditions (i.e., change scores) extracted from 
ROIs. However, change scores will always have lower reli-
ability than their constituent measures (Hedge et al., 2018) 
and have been shown to undermine the reliability of task 
fMRI (Infantolino, Luking, Sauder, Curtin, & Hajcak, 2018). 

However, contrast-based activation values extracted from 
ROIs represent only one possible measure of individual 
differences that can be derived from task-fMRI data. For 
example, several multivariate methods have been pro-
posed to increase the reliability and predictive utility of 
task-fMRI measures by exploiting the high dimensionality 
inherent in fMRI data (Dubois & Adolphs, 2016; Yarkoni 
& Westfall, 2017). To name a few, the reliability of task-
fMRI may be improved by developing measures with 
latent-variable models (Cooper, Jackson, Barch, & Braver, 
2019), measuring individual differences in representational 
spaces with multivoxel pattern analysis (Norman, Polyn, 
Detre, & Haxby, 2006), and training cross-validated machine-
learning models that establish reliability through predic-
tion of individual differences in independent samples 
(Yarkoni & Westfall, 2017). In addition, in many already-
collected data sets, task fMRI can be combined with rest-
ing-state fMRI data to produce reliable measures of intrinsic 
functional connectivity (Elliott et al., 2019). Thus, there are 
multiple approaches available to maximize the value of 
existing task-fMRI data sets in the context of biomarker 
discovery and individual-differences research.

Create a norm of reporting the reliability of task-
fMRI measures. The “replicability revolution” in psy-
chological science provides a timely example of how 
rapidly changing norms can shape research practices and 
standards. In just a few years, practices to enhance repli-
cability, such as preregistration of hypotheses and analytic 
strategies, have risen in popularity (Nosek, Ebersole, 
DeHaven, & Mellor, 2018). We believe similar norms 
would be beneficial for task fMRI in the context of bio-
marker discovery and brain–behavior mapping. In partic-
ular, researchers should report the reliabilities for all 
task-fMRI measures whenever they are used to study indi-
vidual differences. In doing so, however, researchers need 
to ensure adequate power to evaluate test-retest reliability 
with confidence. Given that correlations begin to stabilize 
with around 150 observations (Schönbrodt & Perugini, 
2013), our confidence in the reliability of any specific task 
will depend on collecting larger test-retest data sets. We 
provide evidence that the task-fMRI literature generally has 
low reliability; however, because of the relatively small size 
of each test-retest sample reported here, we urge readers to 
avoid drawing strong conclusions about the reliability of 
specific fMRI tasks. In the pursuit of precise reliability esti-
mates, researchers must collect larger test-retest samples, 
explore test-retest moderators (e.g., the test-retest interval), 
and avoid reporting inflated reliabilities that can arise from 
circular statistical analyses (for detailed recommendations, 
see Kriegeskorte et al., 2010, and Vul et al., 2009).

Researchers can also provide evidence of between-
subjects reliability in the form of internal consistency. 
Although test-retest reliability provides an estimate of 



Task-Functional MRI Reliability: Novel Data and Meta-Analysis 803

stability over time that is suited for trait and biomarker 
research, it is a conservative estimate that requires extra 
data collection and can be undermined by habituation 
effects and rapid fluctuations (Hajcak, Meyer, & Kotov, 
2017). In some cases, internal consistency will be more 
practical because it is cheaper, as it does not require 
additional data collection and can be used in any situ-
ation in which the task-fMRI measure of interest involves 
multiple trials. Internal consistency is particularly well 
suited for measures that are expected to change rapidly 
and index transient psychological states (e.g., current 
emotions or thoughts). However, internal consistency 
alone is not adequate for prognostic biomarkers. Estab-
lishing a norm of explicitly reporting measurement reli-
ability would increase the replicability of task-fMRI 
findings and accelerate biomarker discovery.

More data from more people. Our ability to detect 
reliable individual differences using task fMRI will 
depend, in part, on the field embracing two complemen-
tary improvements to the status quo: (a) more people per 
study and (b) more data per person. It has been sug-
gested that neuroscience is generally an underpowered 
enterprise and that small sample sizes undermine fMRI 
research in particular (Button et  al., 2013). The results 
presented here suggest that this “power failure” may be 
further compounded by low reliability in task fMRI. The 
median sample size in fMRI research is 28.5 (Poldrack 
et al., 2017). However, as shown in Figure 1, task-fMRI 
measures with ICCs of .397 (the meta-analytic mean reli-
ability) would require a total sample of more than 214 to 
achieve 80% power to detect brain–behavior correlations 
of .3, a moderate effect size equal to the size of the larg-
est replicated brain–behavior association (Elliott et  al., 
2018). For an r of .1 (a small effect size common in psy-
chological research; Funder & Ozer, 2019), adequately 
powered studies require a total sample of more than 
2,000. And these calculations are actually best-case sce-
narios, given that they assume perfect reliability of the 
second behavioral variable (see Fig. 1). Increasing the 
sample size of task-fMRI studies and requiring power 
analyses that take into account unreliability represent a 
meaningful way forward for boosting the replicability of 
individual-differences research with task fMRI.

Without substantially higher reliability, task-fMRI 
measures will fail to provide biomarkers that are mean-
ingful on an individual level. One promising method 
to improve the reliability of fMRI is to collect more data 
per person. This approach has been shown to improve 
the reliability of functional connectivity (Elliott et al., 
2019; Gratton et al., 2018), and preliminary efforts sug-
gest this may be true for task fMRI as well (Gordon 
et al., 2017). Pragmatically, collecting additional fMRI 

data will be burdensome for participants, especially in 
children and clinical populations, where longer scan 
times often result in more data artifacts, particularly 
from increased motion. Naturalistic fMRI represents 
one potential solution to this challenge. In naturalistic 
fMRI, participants watch stimulus-rich movies during 
scanning instead of completing traditional cognitive 
neuroscience tasks. Initial efforts suggest that movie 
watching is highly engaging for participants, allows 
more data collection with less motion, and may even 
better elicit individual differences in brain activity by 
emphasizing ecological validity over experimental 
control (Vanderwal, Eilbott, & Castellanos, 2018). As 
the field launches large-scale neuroimaging studies 
(e.g., HCP, UK Biobank, and Adolescent Brain Cogni-
tive Development) in the pursuit of brain biomarkers 
of disease risk, it is critical that we are confident in 
the psychometric properties of task-fMRI measures. 
This will require funders to advocate and support the 
collection of more data from more people.

Develop tasks from the ground up to optimize reli-
able and valid measurement. Instead of continuing to 
adopt fMRI tasks from experimental studies emphasizing 
within-subjects effects, we need to develop new tasks 
(and naturalistic stimuli) from the ground up with the 
goal of optimizing their utility in individual-differences 
research (i.e., between-subjects effects). Psychometrics 
provides many tools and methods for developing reliable 
individual-differences measures that have been underuti-
lized in task-fMRI development. For example, stimuli in 
task fMRI could be selected on the basis of their ability to 
maximally distinguish groups of people or to elicit reli-
able between-subjects variance. As noted in the first rec-
ommendation, psychometric tools for test construction 
could be adopted to optimize reliable task-fMRI measures, 
including item analysis, latent variable modeling, and 
internal-consistency measures (Crocker & Algina, 2006).

Conclusion

A prominent goal of task-fMRI research has been to 
identify abnormal brain activity that could aid in the 
diagnosis, prognosis, and treatment of brain disorders. 
We find that commonly used task-fMRI measures lack 
the minimal reliability standards necessary for accom-
plishing this goal. Intentional design and optimization 
of task-fMRI paradigms are needed to measure reliable 
variation between individuals. As task-fMRI research 
faces the challenges of reproducibility and replicability, 
the importance of reliability must be stressed as well. 
In the age of individualized medicine and precision 
neuroscience, funding is needed for novel task-fMRI 
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research that embraces the psychometric rigor neces-
sary to generate clinically actionable knowledge.

Appendix

Why is reliability critical for task-functional MRI (fMRI) 
research? Test-retest reliability is widely quantified 
using the intraclass correlation coefficient (ICC; Shrout 
& Fleiss, 1979). The ICC can be thought of as the pro-
portion of a measure’s total variance that is accounted 
for by variation among individuals. An ICC can take on 
values between −1 and 1, with values close to 1 indicat-
ing nearly perfect stability of individual differences 
across test-retest measurements and values at or below 
0 indicating no stability. Classical test theory states that 
all measures are made up of a true score plus measure-
ment error (Novick, 1965). The ICC is used to estimate 
the amount of reliable, true-score variance present in 
an individual-differences measure. When a measure is 
taken at two time points, the variance in scores that is 
due to measurement error will consist of random noise 
and will fail to correlate with itself across test-retest 
measurements. However, the variance in a score that is 
due to the true score will be stable and correlate with 
itself across time points (Crocker & Algina, 2006). Mea-
sures with ICCs of less than .40 are thought to have 
poor reliability, between .40 and .60 fair reliability, .60 
and .75 good reliability, and greater than .75 excellent 
reliability. An ICC greater than .80 is considered a clini-
cally required standard for reliability in psychology 
(Cicchetti & Sparrow, 1981).

Reliability is critical for research because the correla-
tion observed between two measures, A and B, is con-
strained by the square root of the product of each 
measure’s reliability (Nunnally, 1959):

r A B r A B

A

( , ) ( , )observed observed true true

observeReliability (

= ×

dd observed) Reliability× ( )B
.

Low reliability of a measure reduces statistical power 
and increases the sample size required to detect a cor-
relation with another measure. Figure 1 shows sample 
sizes required for 80% power to detect correlations 
between a task-fMRI measure of individual differences 
in brain activation and a behavioral or clinical pheno-
type across a range of reliabilities of the task-fMRI 
measure and expected effect sizes. Power curves are 
given for three levels of reliability of the hypothetical 
behavioral or clinical phenotype. The first two panels 
(behavioral ICCs = .6 and .8) represent the most typical 
scenarios. The figure emphasizes the impact of low 
reliability at the lower N range because most fMRI 

studies are relatively small (median N = 28.5; Poldrack 
et al., 2017).
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