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Antiaging therapies show promise in model organism research.
Translation to humans is needed to address the challenges of an
aging global population. Interventions to slow human aging will
need to be applied to still-young individuals. However, most human
aging research examines older adults, manywith chronic disease. As
a result, little is known about aging in young humans. We studied
aging in 954 young humans, the Dunedin Study birth cohort,
tracking multiple biomarkers across three time points spanning
their third and fourth decades of life. We developed and validated
two methods by which aging can be measured in young adults,
one cross-sectional and one longitudinal. Our longitudinal mea-
sure allows quantification of the pace of coordinated physiological
deterioration across multiple organ systems (e.g., pulmonary,
periodontal, cardiovascular, renal, hepatic, and immune function).
We applied these methods to assess biological aging in young
humans who had not yet developed age-related diseases. Young
individuals of the same chronological age varied in their “biological
aging” (declining integrity of multiple organ systems). Already,
before midlife, individuals who were aging more rapidly were less
physically able, showed cognitive decline and brain aging, self-
reported worse health, and looked older. Measured biological
aging in young adults can be used to identify causes of aging
and evaluate rejuvenation therapies.
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By 2050, the world population aged 80 y and above will more
than triple, approaching 400 million individuals (1, 2). As the

population ages, the global burden of disease and disability is
rising (3). From the fifth decade of life, advancing age is asso-
ciated with an exponential increase in burden from many different
chronic conditions (Fig. 1). The most effective means to reduce
disease burden and control costs is to delay this progression by
extending healthspan, years of life lived free of disease and dis-
ability (4). A key to extending healthspan is addressing the prob-
lem of aging itself (5–8).
At present, much research on aging is being carried out with

animals and older humans. Paradoxically, these seemingly sen-
sible strategies pose translational difficulties. The difficulty with
studying aging in old humans is that many of them already have
age-related diseases (9–11). Age-related changes to physiology
accumulate from early life, affecting organ systems years before
disease diagnosis (12–15). Thus, intervention to reverse or delay
the march toward age-related diseases must be scheduled while
people are still young (16). Early interventions to slow aging can
be tested in model organisms (17, 18). The difficulty with these
nonhuman models is that they do not typically capture the
complex multifactorial risks and exposures that shape human
aging. Moreover, whereas animals’ brief lives make it feasible to
study animal aging in the laboratory, humans’ lives span many
years. A solution is to study human aging in the first half of the
life course, when individuals are starting to diverge in their aging

trajectories, before most diseases (and regimens to manage
them) become established. The main obstacle to studying aging
before old age—and before the onset of age-related diseases—
is the absence of methods to quantify the Pace of Aging in
young humans.
We studied aging in a population-representative 1972–1973 birth

cohort of 1,037 young adults followed from birth to age 38 y with
95% retention: the Dunedin Study (SI Appendix). When they were
38 y old, we examined their physiologies to test whether this young
population would show evidence of individual variation in aging
despite remaining free of age-related disease. We next tested the
hypothesis that cohort members with “older” physiologies at age 38
had actually been aging faster than their same chronologically aged
peers who retained “younger” physiologies; specifically, we tested
whether indicators of the integrity of their cardiovascular, meta-
bolic, and immune systems, their kidneys, livers, gums, and lungs,
and their DNA had deteriorated more rapidly according to mea-
surements taken repeatedly since a baseline 12 y earlier at age 26.
We further tested whether, by midlife, young adults who were
aging more rapidly already exhibited deficits in their physical
functioning, showed signs of early cognitive decline, and looked
older to independent observers.

Results
Are Young Adults Aging at Different Rates? Measuring the aging pro-
cess is controversial. Candidate biomarkers of aging are numerous,
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but findings are mixed (19–22). Multibiomarker algorithms have
been suggested as a more reliable alternative to single-marker aging
indicators (23–25). A promising algorithm is the 10-biomarker US
National Health and Nutrition Survey (NHANES)-based measure of
“Biological Age.” In more than 9,000 NHANES participants aged
30–75 y at baseline, Biological Age outperformed chronological age
in predicting mortality over a two-decade follow-up (26). Be-
cause NHANES participants were all surveyed at one time point,
age differences in biomarker levels were not independent of co-
hort effects; measured aging also included secular trends in en-
vironmental and behavioral influences on biomarkers. Similarly,
most deaths observed during follow-up occurred to the oldest
NHANES participants, leaving the algorithm’s utility for quantifi-
cation of aging in younger persons uncertain. We therefore applied
this algorithm to calculate the Biological Age of Dunedin Study
members, who all shared the same birth year and birthplace, and
were all chronologically 38 y old at the last assessment (SI Appen-
dix). Even though the Dunedin cohort remained largely free of
chronic disease, Biological Age took on a normal distribution,
ranging from 28 y to 61 y (M = 38 y, SD = 3.23; Fig. 2). This dis-
tribution was consistent with the hypothesis that some 38-y-old
cohort members were biologically older than others.
Biological Age is assumed to reflect ongoing longitudinal

change within a person. However, it is a cross-sectional measure
taken at a single point in time. Therefore, we next tested the
hypothesis that young adults with older Biological Age at age
38 y were actually aging faster. To quantify the pace at which an
individual is aging, longitudinal repeated measures are needed
that track change over time. The Dunedin Study contains lon-
gitudinal data on 18 biomarkers established as risk factors or
correlates of chronic disease and mortality. Our selection of 18
biomarkers was constrained by measures available 15 y ago at
time one, that can be assayed with high throughput, and that are
scalable to epidemiologic studies. Still, these biomarkers track
the physiological integrity of study members’ cardiovascular,
metabolic, and immune systems, their kidneys, livers, and lungs,
their dental health, and their DNA (SI Appendix). We analyzed
within-individual longitudinal change in these 18 biomarkers
across chronological ages 26 y, 32 y, and 38 y to quantify each
study member’s personal rate of physiological deterioration,
their “Pace of Aging.”
The Pace of Aging was calculated from longitudinal analysis of

the 18 biomarkers in three steps (SI Appendix). First, all bio-
markers were standardized to have the same scale (mean = 0,
SD = 1 based on their distributions when study members were 26 y
old) and coded so that higher values corresponded to older levels

(i.e., scores were reversed for cardiorespiratory fitness, lung func-
tion, leukocyte telomere length, creatinine clearance, and high
density lipoprotein cholesterol, for which values are expected to
decline with increasing chronological age). Even in our cohort of
young adults, biomarkers showed a pattern of age-dependent de-
cline in the functioning of multiple organ system over the 12-y fol-
low-up period (Fig. 3). Second, we used mixed-effects growth
models to calculate each study member’s personal slope for each of
the 18 biomarkers; 954 individuals with repeated measures of bio-
markers contributed data to this analysis. Of the 51,516 potential
observations (n = 954 study members × 18 biomarkers × 3 time
points), 44,475 (86.3%) were present in the database and used to
estimate longitudinal growth curves modeling the Pace of Aging.
The models took the form Bit = γ0 + γ1Ageit + μ0i + μ1iAgeit + eit,
where Bit is a biomarker measured for individual i at time t, γ0 and γ1
are the fixed intercept and slope estimated for the cohort, and μ0i
and μ1i are the random intercepts and slopes estimated for each
individual i. Finally, we calculated each study member’s Pace of
Aging as the sum of these 18 slopes: Pace  of  Agingi =

P18
B=1μ1iB.

We calculated Pace of Aging from slopes because our goal was to
quantify change over time. We summed slopes across biomarkers
because our goal was to quantify change across organ systems. An
additive model reduces the influence of temporary change isolated
to any specific organ system, e.g., as might arise from a transient
infection. The resulting Pace of Aging measure was normally

Fig. 1. Burden of chronic disease rises exponentially with age. To examine the association between age and disease burden, we accessed data from the
Institute for Health Metrics and Evaluation Global Burden of Disease database (www.healthdata.org/gbd) (43). Data graph (A) disability-adjusted life years
(DALYs) and (B) deaths per 100,000 population by age. Bars, from bottom to top, reflect the burden of cardiovascular disease (navy), type-2 diabetes (light
blue), stroke (lavender), chronic respiratory disease (red), and neurological disorders (purple).

Fig. 2. Biological Age is normally distributed in a cohort of adults aged 38 y.
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distributed in the cohort, consistent with the hypothesis that some
cohort members were aging faster than others.
The Pace of Aging can be scaled to reflect physiological

change relative to the passage of time. Because the intact birth
cohort represents variation in the population, it provides its own
norms. We scaled the Pace of Aging so that the central tendency
in the cohort indicates 1 y of physiological change for every one
chronological year. On this scale, cohort members ranged in
their Pace of Aging from near 0 y of physiological change per
chronological year to nearly 3 y of physiological change per
chronological year.
Study members with advanced Biological Age had experienced

a more rapid Pace of Aging over the past 12 y compared with
their biologically younger age peers (r = 0.38, P < 0.001; Fig. 4).
Each year increase in Biological Age was associated with a 0.05-y
increase in the Pace of Aging relative to the population norm.
Thus, a 38-y-old with a Biological Age of 40 y was estimated
to have aged 1.2 y faster over the course of the 12-y follow-up
period compared with a peer whose chronological age and
Biological Age were 38. This estimate suggests that a substantial
component of individual differences in Biological Age at midlife
emerges during adulthood.
We next tested whether individual variation in Biological Age

and the Pace of Aging related to differences in the functioning of
study members’ bodies and brains, measured with instruments
commonly used in clinical settings (SI Appendix).

Does Accelerated Aging in Young Adults Influence Indicators of
Physical Function? In gerontology, diminished physical capability
is an important indication of aging-related health decline that
cuts across disease categories (27, 28). Study members with ad-
vanced Biological Age performed less well on objective tests of
physical functioning at age 38 than biologically younger peers
(Fig. 5). They had more difficulty with balance and motor tests
(for unipedal stance test of balance, r = −0.22, P < 0.001; for
grooved pegboard test of fine motor coordination, r = −0.13, P <
0.001), and they were not as strong (grip strength test, r = −0.19,
P < 0.001). Study members’ Biological Ages were also related to
their subjective experiences of physical limitation. Biologically
older study members reported having more difficulties with
physical functioning than did biologically younger age peers
(SF-36 physical functioning scale, r = 0.13, P < 0.012). We re-
peated these analyses using the Pace of Aging measure. Consistent
with findings for Biological Age, study members with a more rapid
Pace of Aging exhibited diminished capacity on the four measures
of physical functioning relative to more slowly aging age peers.

Does Accelerated Aging in Young Adults Influence Indicators of Brain
Aging? In neurology, cognitive testing is used to evaluate age-
related decline in brain integrity. The Dunedin Study conducted
cognitive testing when study members were children and re-
peated this testing at the age-38 assessment (29). Study members
with older Biological Ages had poorer cognitive functioning at
midlife (r = −0.17, P < 0.001). Moreover, this difference in
cognitive functioning reflected actual cognitive decline over the
years. When we compared age-38 IQ test scores to baseline test
scores from childhood, study members with older Biological Age
showed a decline in cognitive performance net of their baseline
level (r = −0.09, P = 0.010). Results were similar for the Pace of
Aging (Fig. 6). The literature on cognitive aging divides the
composite IQ into “crystallized versus fluid” constituents (30, 31).
Crystallized abilities (such as the Information subtest) peak in the
fifties and show little age-related decline thereafter. In contrast,
fluid abilities (such as the digit symbol coding subtest) peak in the
twenties and show clear decline thereafter (31). The overall IQ
aggregates these age trends. This aggregation makes it a highly
reliable measure, albeit a conservative choice as a correlate of

Fig. 3. Healthy adults exhibit biological aging of multiple organ systems over 12 y of follow-up. Biomarker values were standardized to have mean = 0 and
SD = 1 across the 12 y of follow-up (Z scores). Z scores were coded so that higher values corresponded to older levels of the biomarkers; i.e., Z scores for
cardiorespiratory fitness, lung function (FEV1 and FEV1/FVC), leukocyte telomere length, creatinine clearance, and HDL cholesterol, which decline with age,
were reverse coded so that higher Z scores correspond to lower levels.

Fig. 4. Dunedin Study members with older Biological Age at 38 y exhibited
an accelerated Pace of Aging from age 26–38 y. The figure shows a binned
scatterplot and regression line. Plotted points show means for bins of data
from 20 Dunedin Study members. Effect size and regression line were cal-
culated from the raw data.
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Biological Age and Pace of Aging. Therefore, we also report
results for individual subtests in SI Appendix. As expected, the
largest declines in cognitive functioning, and the largest corre-
lations between decline and Pace of Aging, were observed for
tests of fluid intelligence, in particular the digit symbol coding
test (r = −0.15, P < 0.001).
Neurologists have also begun to use high-resolution 2D pho-

tographs of the retina to evaluate age-related loss of integrity of
blood vessels within the brain. Retinal and cerebral small vessels
share embryological origin and physiological features, making
retinal vasculature a noninvasive indicator of the state of the
brain’s microvasculature (32). Retinal microvascular abnormali-
ties are associated with age-related brain pathology, including
stroke and dementia (33–35). Two measurements of interest are
the relative diameters of retinal arterioles and venules. Narrower
arterioles are associated with stroke risk (36). Wider venules are
associated with hypoxia and dementia risk (37, 38). We calcu-
lated the average caliber of study members’ retinal arterioles and
venules from images taken at the age-38 assessment. Consistent
with the cognitive testing findings, study members with advanced
Biological Age had older retinal vessels (narrower arterioles, r =
−0.20, P < 0.001; wider venules, r = 0.17, P < 0.001). Results
were similar for the Pace of Aging measure (Fig. 6).

Do Young Adults Who Are Aging Faster Feel and Look Older? Beyond
clinical indicators, a person’s experience of aging is structured by
their own perceptions about their well-being and by the per-
ceptions of others. Consistent with tests of aging indicators, study
members with older Biological Age perceived themselves to be in
poorer health compared with biologically younger peers (r =
−0.22, P < 0.001). In parallel, these biologically older study
members were perceived to be older by independent observers.
We took a frontal photograph of each study member’s face at
age 38, and showed these to a panel of Duke University un-
dergraduates who were kept blind to all other information about

the study members, including their age. Based on the facial im-
ages alone, student raters scored study members with advanced
Biological Age as looking older than their biologically younger
peers (r = 0.21, P < 0.001). Results for self-perceived well-being
and facial age were similar when analyses were conducted using
the Pace of Aging measure (Fig. 7).

Discussion
Aging is now understood as a gradual and progressive de-
terioration of integrity across multiple organ systems (7, 39).
Here we show that this process can be quantified already in
young adults. We followed a birth cohort of young adults over 12 y,
from ages 26–38, and observed systematic change in 18 bio-
markers of risk for age-related chronic diseases that was con-
sistent with age-dependent decline. We were able to measure
these changes even though the typical age of onset for the related
diseases was still one to two decades in the future and just 1.1%
of the cohort members had been diagnosed with an age-related
chronic disease.
Measuring aging remains controversial. We measured aging in

two ways. First, we used a biomarker scoring algorithm pre-
viously calibrated on a large, mixed-age sample. We applied this
algorithm to cross-sectional biomarker data collected when our
study members were all chronologically aged 38 y to calculate
their Biological Age. Second, we conducted longitudinal analysis
of 18 biomarkers in our population-representative birth cohort
when they were aged 26 y, 32 y, and 38 y. We used this longi-
tudinal panel dataset to model how each individual changed over
the 12-y period to calculate their personal Pace of Aging.
Pace of Aging and Biological Age represent two different ap-

proaches to quantifying aging. Pace of Aging captures real-time
longitudinal change in human physiology across multiple systems
and is suitable for use in studies of within-individual change. For this
analysis, we examined all 18 biomarkers with available longitudinal

Fig. 5. Healthy adults who were aging faster exhibited deficits in physical functioning relative to slower-aging peers. The figure shows binned scatter plots
of the associations of Biological Age and Pace of Aging with tests of physical functioning (unipedal stance test, grooved pegboard test, grip strength) and
study members’ reports of their physical limitations. In each graph, Biological Age associations are plotted on the left in blue (red regression line) and Pace of
Aging associations are plotted on the right in green (navy regression line). Plotted points showmeans for bins of data from 20 Dunedin Study members. Effect
size and regression line were calculated from the raw data.
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data in the Dunedin Study biobank. The other approach, Bi-
ological Age, provides a point-in-time snapshot of physiological
integrity in cross-sectional samples. For this analysis, we used the
published 10-biomarker set developed from the NHANES.
These two approaches yielded consistent results. Study members
with older Biological Age had evidenced faster Pace of Aging
over the preceding 12 y. Based on Pace of Aging analysis, we
estimate that roughly 1/2 of the difference in Biological Age
observed at chronological age 38 had accumulated over the past
12 y. Our analysis shows that Biological Age can provide a
summary of accumulated aging in cases where only cross-sectional
data are available. For purposes of measuring the effects of risk
exposures and antiaging treatments on the aging process, Pace-
of-Aging-type longitudinal measures provide a means to test within
individual change.
Biological measures of study members’ aging were mirrored in

their functional status, brain health, self-awareness of their own
physical well-being, and their facial appearance. Study members
who had older Biological Age and who experienced a faster Pace
of Aging scored lower on tests of balance, strength, and motor
coordination, and reported more physical limitations. Study
members who had an older Biological Age and who experienced
a faster Pace of Aging also scored lower on IQ tests when they
were aged 38 y, showed actual decline in full-scale IQ score from
childhood to age-38 follow-up, and exhibited signs of elevated
risk for stroke and for dementia measured from images of micro-
vessels in their eyes. Further, study members who had an older
Biological Age and who experienced a faster Pace of Aging re-
ported feeling in worse health. Undergraduate student raters
who did not know the study members beyond a facial photograph
were able to perceive differences in the aging of their faces.
Together, these findings constitute proof of principle for the

measures of Biological Age and Pace of Aging studied here to

serve as technology to measure aging in young people. Further
research is needed to refine and elaborate this technology. Here
we identify several future directions that can build on our initial
proof-of-principle for measuring accelerated aging up to midlife.
First, our analysis was limited to a single cohort, and one that

lacked ethnic minority populations. Replication in other cohorts
is needed, in particular in samples including sufficient numbers
of ethnic minority individuals to test the “weathering hypothesis”
that the stresses of ethnic minority status accelerate aging (40, 41).
Larger samples can also help with closer study of relatively rare
aging trajectories. Three Dunedin Study members had Pace of
Aging less than zero, appearing to grow physiologically younger
during their thirties. In larger cohorts, study of such individuals
may reveal molecular and behavioral pathways to rejuvenation.
Second, data were right censored (follow-up extended only to

age 38); aging trajectories may change at older ages. Some co-
hort members experienced negligible aging per year, a pace that
cannot be sustained throughout their lives. Future waves of data
collection in the Dunedin cohort will allow us to model these
nonlinear patterns of change. A further issue with right censoring
is that we lack follow-up data on disability and mortality with
which to evaluate the precision of the Pace of Aging measure.
Continued follow-up of the Dunedin cohort and analysis of
other cohorts with longer-range follow-up can be used to con-
duct, e.g., receiver operating characteristic curve and related
analyses (42) to evaluate how well Pace of Aging forecasts health-
span and lifespan.
Third, data were left censored (biomarker follow-up began at

age 26); when and how aging trajectories began to diverge was
not observed. Studies tracking Pace of Aging earlier in adulthood
and studies of children are needed.
Fourth, measurements were taken only once every 6 y. Con-

tiguous annual measurements would provide better resolution

Fig. 6. Healthy adults who were aging faster showed evidence of cognitive decline and increased risk for stroke and dementia relative to slower-aging peers.
The figure shows binned scatter plots of the associations of Biological Age and Pace of Aging with cognitive functioning and cognitive decline (Top) and with the
calibers of retinal arterioles and venules (Bottom). The y axes in the graphs of cognitive functioning and cognitive decline are denominated in IQ points. The y axes
in the graphs of arteriolar and venular caliber are denominated in SD units. In each graph, Biological Age associations are plotted on the left in blue
(red regression line) and Pace of Aging associations are plotted on the right in green (navy regression line). Plotted points show means for bins of data from
20 Dunedin Study members. Effect size and regression line were calculated from the raw data.
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to measure aging, but neither our funders nor our research
participants favored this approach. Medical record datasets
comprising primary care health screenings may provide annual
follow-up intervals (although patients seeking annual physicals
will not fully represent population aging).
Fifth, Pace of Aging analyses applied a unit weighting scheme

to all biomarkers. We weighted all biomarkers equally to trans-
parently avoid assumptions, and to avoid sample-specific find-
ings. Nonetheless, aging is likely to affect different bodily systems
to differing degrees at different points in the lifespan. Further
study is needed to refine weightings of biomarker contributions
to Pace of Aging measurement. For example, longitudinal data
tracking biomarkers could be linked with follow-up records of
disability and mortality to estimate weights for biomarker change.
Sixth, biomarkers used to measure aging in our study were

restricted to those scalable to a cohort based on technology
available during the measurement period (1998–2012). They
necessarily provide an incomplete picture of age-related changes
to physiology. Similarly, it is possible that not every biomarker in
our set of 18 is essential to measure aging processes. We used all
of the biomarkers that were repeatedly measured in the Dunedin
Study, some of which may become more (or less) important for
modeling Pace of Aging as our cohort grows older. Our leave-one-
out analysis showed that associations between Pace of Aging and
measures of physical and cognitive functioning and subjective
aging did not depend on any one biomarker. A next step is add-
one-in-type analysis to test the relative performance of bio-
marker subsets with the aim of identifying a “short form” of the
Pace of Aging. This analysis will require multiple datasets so that
an optimal short-form Pace of Aging identified in a training
dataset can be evaluated in an independent test dataset.
Seventh, methods are not available to estimate confidence

intervals for a person’s Pace of Aging score. Datasets with re-
peated measures of multiple biomarkers are becoming available.

Our findings suggest that future studies of aging incorporate
longitudinal repeated measures of biomarkers to track change.
They also suggest that these studies of aging incorporate multiple
biomarkers to track change across different organ systems. Such
studies will require new statistical methods to calculate confi-
dence intervals around Pace of Aging-type scores.
Within the bounds of these limitations, the implication of the

present study is that it is possible to quantify individual differences
in aging in young humans. This development breaks through two
blockades separating model organism research from human
translational studies. One blockade is that animals age quickly
enough that whole lifespans can be observed whereas, in humans,
lifespan studies outlast the researchers. A second blockade is that
humans are subject to a range of complex social and genomic
exposures impossible to completely simulate in animal experiments.
If aging can be measured in free-living humans early in their
lifespans, there are new scientific opportunities. These include
testing the fetal programming of accelerated aging (e.g., does in-
trauterine growth restriction predispose to faster aging in young
adulthood?); testing the effects of early-life adversity (e.g., does
child maltreatment accelerate aging in the decades before chronic
diseases develop?); testing social gradients in health (e.g., do
children born into poor households age more rapidly than their
age-peers born into rich ones and can such accelerated aging be
slowed by childhood interventions?); and searching for genetic
regulators of aging processes (e.g., interrogating biological aging
using high throughput genomics). There are also potential clinical
applications. Early identification of accelerated aging before
chronic disease becomes established may offer opportunities for
prevention. Above all, measures of aging in young humans allow for
testing the effectiveness of antiaging therapies (e.g., caloric restric-
tion) without waiting for participants to complete their lifespans.

Materials and Methods
A more detailed description of study measures, design, and analysis is pro-
vided in SI Appendix.

Sample. Participants are members of the Dunedin Multidisciplinary Health
and Development Study, which tracks the development of 1,037 individuals
born in 1972–1973 in Dunedin, New Zealand.

Measuring Biological Age. We calculated each Dunedin Study member’s
Biological Age at age 38 y using the Klemera–Doubal equation (23) and param-
eters estimated from the NHANES-III dataset (26) for 10 biomarkers. Biological Age
took on a normal distribution, ranging from 28 y to 61 y (M = 38 y, SD = 3.23).

Measuring the Pace of Aging. We measured Pace of Aging from repeated
assessments of a panel of 18 biomarkers, 7 of which overlapped with the
Biological Age algorithm. We modeled change over time in each biomarker
and composited results within each individual to calculate their Pace of
Aging. Study members ranged in their Pace of Aging from near 0 y of
physiological change per chronological year to nearly 3 y of physiological
change per chronological year.

Measuring Diminished Physical Capacity. We measured physical capacity as
balance, strength,motor coordination, and freedom fromphysical limitations
when study members were aged 38 y.

Measuring Cognitive Aging. We measured cognitive aging using neuropsy-
chological tests in childhood and at age 38 y and images of retinal
microvessels.

Measuring Subjective Perceptions of Aging. We measured subjective percep-
tions of aging using study members’ self reports and evaluations of facial
photographs of the study members made by independent raters.
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show means for bins of data from 20 Dunedin Study members. Effect size
and regression line were calculated from the raw data.
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SUPPLEMENTAL	
  METHODS	
  TO	
  QUANTIFICATION	
  OF	
  BIOLOGICAL	
  AGING	
  IN	
  YOUNG	
  ADULTS	
  

DW	
  Belsky	
  et	
  al.	
  	
  

Sample.	
  	
  

	
   Participants	
  are	
  members	
  of	
  the	
  Dunedin	
  Study,	
  a	
  longitudinal	
  investigation	
  of	
  health	
  and	
  

behavior	
  in	
  a	
  complete	
  birth	
  cohort.	
  	
  Study	
  members	
  (N=1,037;	
  91%	
  of	
  eligible	
  births;	
  52%	
  

male)	
  were	
  all	
  individuals	
  born	
  between	
  April	
  1972	
  and	
  March	
  1973	
  in	
  Dunedin,	
  New	
  Zealand	
  

(NZ),	
  who	
  were	
  eligible	
  based	
  on	
  residence	
  in	
  the	
  province	
  and	
  who	
  participated	
  in	
  the	
  first	
  

assessment	
  at	
  age	
  3.	
  	
  The	
  cohort	
  represents	
  the	
  full	
  range	
  of	
  socioeconomic	
  status	
  on	
  NZ’s	
  

South	
  Island	
  and	
  as	
  adults	
  matches	
  the	
  NZ	
  National	
  Health	
  and	
  Nutrition	
  Survey	
  on	
  key	
  health	
  

indicators	
  (e.g.,	
  BMI,	
  smoking,	
  GP	
  visits)	
  (44).	
  Cohort	
  members	
  are	
  primarily	
  white;	
  fewer	
  than	
  

7%	
  self-­‐identify	
  as	
  having	
  partial	
  non-­‐Caucasian	
  ancestry,	
  matching	
  the	
  South	
  Island	
  (45).	
  

Assessments	
  were	
  carried	
  out	
  at	
  birth	
  and	
  ages	
  3,	
  5,	
  7,	
  9,	
  11,	
  13,	
  15,	
  18,	
  21,	
  26,	
  32,	
  and,	
  most	
  

recently,	
  38	
  years,	
  when	
  95%	
  of	
  the	
  1,007	
  study	
  members	
  still	
  alive	
  took	
  part.	
  At	
  each	
  

assessment,	
  each	
  study	
  member	
  is	
  brought	
  to	
  the	
  research	
  unit	
  for	
  a	
  full	
  day	
  of	
  interviews	
  and	
  

examinations.	
  The	
  Otago	
  Ethics	
  Committee	
  approved	
  each	
  phase	
  of	
  the	
  study	
  and	
  informed	
  

consent	
  was	
  obtained	
  from	
  all	
  study	
  members.	
  

Measuring	
  aging.	
  	
  	
  

	
   By	
  age	
  38	
  years,	
  only	
  11	
  Study	
  members	
  had	
  developed	
  an	
  age-­‐related	
  chronic	
  disease	
  

(diagnosed	
  type-­‐2	
  diabetes,	
  myocardial	
  infarction,	
  or	
  stroke).	
  	
  

We	
  measured	
  aging	
  in	
  two	
  ways.	
  	
  

	
   Biological	
  Age	
  Algorithm.	
  Calculating	
  human	
  biological	
  age	
  is	
  a	
  relatively	
  recent	
  

enterprise(46)	
  and	
  there	
  is	
  disagreement	
  about	
  methods	
  (47,	
  48).	
  Our	
  goal	
  was	
  to	
  borrow	
  and	
  

implement	
  the	
  best-­‐validated	
  methods.	
  	
  Recently,	
  data	
  from	
  NHANES-­‐III	
  participants	
  aged	
  30	
  to	
  

75	
  years	
  were	
  used	
  to	
  compare	
  the	
  ability	
  of	
  five	
  Biological	
  Age	
  algorithms	
  to	
  predict	
  mortality	
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when	
  participants	
  were	
  followed-­‐up	
  20	
  years	
  later	
  (26).	
  Results	
  showed	
  that	
  the	
  Klemera-­‐

Doubal	
  method	
  (23)	
  performed	
  the	
  best	
  in	
  NHANES-­‐III	
  (i.e.,	
  it	
  predicted	
  mortality,	
  did	
  so	
  better	
  

than	
  chronological	
  age,	
  and	
  accounted	
  for	
  the	
  association	
  between	
  chronological	
  age	
  and	
  

mortality),	
  consistent	
  with	
  results	
  from	
  other	
  samples	
  (23,	
  49).	
  Receiver	
  operating	
  

characteristic	
  curve	
  analysis	
  in	
  the	
  NHANES	
  sample	
  showed	
  Biological	
  Age	
  to	
  be	
  a	
  modestly	
  

sensitive	
  and	
  specific	
  predictor	
  of	
  mortality	
  (Area	
  Under	
  the	
  Curve=0.85,	
  SE=0.01)	
  (26).	
  We	
  

calculated	
  each	
  Dunedin	
  study	
  member’s	
  Biological	
  Age	
  at	
  age	
  38	
  years	
  using	
  the	
  Klemera-­‐

Doubal	
  equation	
  (23)	
  and	
  parameters	
  estimated	
  from	
  the	
  NHANES-­‐III	
  dataset	
  (26).	
  The	
  

equation	
  takes	
  information	
  from	
  m	
  number	
  of	
  regression	
  lines	
  of	
  chronological	
  age	
  regressed	
  

on	
  m	
  number	
  of	
  biomarkers:	
  

𝐵𝐴!" =
!!!!!

!!
!!
!!

!"
!!"
!

!
!!!

!!
!!

!
! !
!!"
!

!
!!!

,	
  where	
  x	
  is	
  the	
  value	
  of	
  biomarker	
  j	
  measured	
  for	
  an	
  individual	
  in	
  the	
  

Dunedin	
  cohort.	
  For	
  each	
  biomarker	
  j,	
  the	
  parameters	
  k,	
  q,	
  and	
  s	
  are	
  estimated	
  from	
  a	
  

regression	
  of	
  chronological	
  age	
  on	
  the	
  biomarker	
  in	
  data	
  from	
  NHANES-­‐III.	
  k,	
  q,	
  and	
  s,	
  are	
  the	
  

regression	
  intercept,	
  slope,	
  and	
  root	
  mean	
  squared	
  error,	
  respectively.	
  sBA	
  is	
  a	
  scaling	
  factor	
  

equal	
  to	
  the	
  square	
  root	
  of	
  the	
  variance	
  in	
  chronological	
  age	
  explained	
  by	
  the	
  biomarker	
  panel	
  

in	
  the	
  NHANES	
  database.	
  CA	
  is	
  chronological	
  age	
  (38	
  for	
  all	
  Dunedin	
  cohort	
  members).	
  

Biomarkers	
  used	
  to	
  calculate	
  biological	
  age	
  in	
  the	
  Dunedin	
  cohort	
  at	
  age	
  38	
  years	
  are	
  the	
  same	
  

as	
  those	
  used	
  in	
  the	
  NHANES	
  analysis.	
  (These	
  ten	
  biomarkers	
  were	
  selected	
  for	
  inclusion	
  in	
  the	
  

algorithm	
  on	
  the	
  basis	
  of	
  their	
  association	
  with	
  chronological	
  age	
  in	
  NHANES-­‐III.)	
  The	
  

biomarkers	
  are:	
  Glycated	
  hemoglobin,	
  Forced	
  expiratory	
  volume	
  in	
  one	
  second	
  (FEV1),	
  Blood	
  

pressure	
  (systolic),	
  Total	
  cholesterol,	
  C-­‐reactive	
  protein,	
  Creatinine,	
  Urea	
  nitrogen,	
  Albumin,	
  

Alkaline	
  phosphatase,	
  and	
  Cytomegalovirus	
  IgG.	
  Details	
  on	
  biomarker	
  measurements	
  are	
  

provided	
  in	
  Supplemental	
  Table	
  1.	
  Biological	
  Age	
  took	
  on	
  a	
  normal	
  distribution,	
  ranging	
  from	
  

28-­‐61	
  years	
  (M=38	
  years,	
  SD=3.23).	
  

Pace	
  of	
  Aging.	
  We	
  measured	
  Pace	
  of	
  Aging	
  from	
  repeated	
  assessments	
  of	
  a	
  panel	
  of	
  18	
  

biomarkers.	
  Seven	
  biomarkers	
  overlapped	
  with	
  the	
  Biological	
  Age	
  algorithm:	
  Glycated	
  

hemoglobin,	
  Forced	
  expiratory	
  volume	
  in	
  one	
  second	
  (FEV1),	
  Blood	
  pressure	
  (mean	
  arterial	
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pressure),	
  Total	
  cholesterol,	
  C-­‐reactive	
  protein,	
  Creatinine	
  clearance,	
  and	
  Urea	
  nitrogen.	
  In	
  

addition,	
  Pace	
  of	
  Aging	
  included	
  the	
  following	
  11	
  additional	
  biomarkers:	
  	
  Cardiorespiratory	
  

fitness	
  (VO2Max),	
  Waist-­‐hip	
  ratio,	
  Forced	
  vital	
  capacity	
  ratio	
  (FEV1/FVC),	
  Body	
  mass	
  index	
  (BMI),	
  

Leukocyte	
  telomere	
  length	
  (LTL),	
  Lipoprotein(a),	
  Triglycerides,	
  Periodontal	
  disease,	
  White	
  blood	
  

cell	
  count,	
  High	
  density	
  lipoprotein	
  (HDL),	
  and	
  Apolipoprotein	
  B100/A1	
  ratio.	
  Biomarkers	
  were	
  

assayed	
  at	
  the	
  age-­‐26,	
  -­‐32,	
  and	
  -­‐38	
  assessments.	
  (Albumin,	
  Alkaline	
  phosphatase,	
  and	
  

Cytomegalovirus	
  IgG	
  could	
  not	
  be	
  included	
  in	
  the	
  Pace	
  of	
  Aging	
  because	
  they	
  were	
  measured	
  

only	
  at	
  the	
  age-­‐38	
  assessment.)	
  Details	
  on	
  biomarker	
  measurements	
  are	
  provided	
  in	
  

Supplemental	
  Table	
  1.	
  

We	
  calculated	
  each	
  Study	
  member’s	
  Pace	
  of	
  Aging	
  in	
  three	
  steps.	
  In	
  the	
  first	
  step,	
  we	
  

transformed	
  the	
  biomarker	
  values	
  to	
  a	
  standardized	
  scale.	
  For	
  each	
  biomarker,	
  we	
  standardized	
  

values	
  according	
  to	
  the	
  age-­‐26	
  distribution,	
  setting	
  the	
  mean	
  to	
  zero	
  and	
  the	
  corresponding	
  

standard	
  deviation	
  to	
  one.	
  Standardization	
  was	
  conducted	
  separately	
  for	
  men	
  and	
  women.	
  

Scores	
  were	
  reversed	
  for	
  VO2Max,	
  FEV1/FVC,	
  FEV1,	
  LTL,	
  creatinine	
  clearance,	
  and	
  HDL	
  

cholesterol,	
  which	
  are	
  known	
  to	
  decline	
  with	
  age.	
  Thus,	
  standardized	
  biomarker	
  values	
  greater	
  

than	
  zero	
  indicated	
  levels	
  that	
  were	
  “older”	
  and	
  values	
  less	
  than	
  zero	
  indicated	
  levels	
  

“younger”	
  as	
  compared	
  to	
  the	
  average	
  26-­‐year-­‐old.	
  Over	
  the	
  12	
  years	
  of	
  follow-­‐up,	
  the	
  

biomarker	
  panel	
  indicated	
  a	
  progressive	
  deterioration	
  of	
  physiological	
  integrity	
  with	
  advancing	
  

chronological	
  age;	
  i.e.	
  values	
  tended	
  to	
  increase	
  from	
  the	
  age-­‐26	
  assessment	
  to	
  the	
  age-­‐38	
  

assessment.	
  	
  

In	
  the	
  second	
  step,	
  we	
  calculated	
  each	
  Study	
  member’s	
  personal	
  slope	
  for	
  each	
  of	
  the	
  

18	
  biomarkers—the	
  average	
  year-­‐on-­‐year	
  change	
  observed	
  over	
  the	
  12-­‐year	
  period.	
  Slopes	
  

were	
  estimated	
  using	
  a	
  mixed	
  effects	
  growth	
  model(50)	
  that	
  regressed	
  the	
  biomarker	
  level	
  on	
  

age.	
  The	
  models	
  took	
  the	
  form	
  𝐵!" = 𝛾! + 𝛾!𝐴𝑔𝑒!" + 𝝁𝟎𝒊 + 𝝁𝟏𝒊𝐴𝑔𝑒!" + 𝜖!",	
  where	
  Bit	
  is	
  a	
  

biomarker	
  measured	
  for	
  individual	
  ‘i’	
  at	
  time	
  ‘t’,	
  	
  γ0	
  and	
  γ1	
  are	
  the	
  fixed	
  intercept	
  and	
  slope	
  

estimated	
  for	
  the	
  cohort,	
  and	
  μ0i	
  and	
  μ1i	
  	
  are	
  the	
  “random”	
  intercepts	
  and	
  slopes	
  estimated	
  for	
  

each	
  individual	
  ‘i’.	
  (Only	
  two	
  measurement	
  waves	
  were	
  available	
  for	
  LTL,	
  high	
  sensitivity	
  CRP	
  

(hsCRP),	
  and	
  creatinine	
  clearance.	
  Slopes	
  for	
  these	
  biomarkers	
  were	
  calculated	
  as	
  difference	
  

scores;	
  between	
  ages	
  32	
  and	
  38	
  for	
  hsCRP	
  and	
  creatinine	
  clearance	
  and	
  between	
  ages	
  26	
  and	
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38	
  for	
  LTL.)	
  Within	
  individuals,	
  levels	
  and	
  slopes	
  of	
  the	
  18	
  biomarkers	
  were	
  positively	
  correlated	
  

(averaged	
  across	
  all	
  pairs	
  of	
  biomarkers,	
  r=0.10	
  for	
  intercepts	
  and	
  r=0.07	
  for	
  slopes).	
  A	
  

complete	
  list	
  of	
  average	
  biomarker	
  slopes	
  and	
  pairwise	
  correlations	
  among	
  biomarker	
  slopes	
  is	
  

presented	
  in	
  Supplemental	
  Table	
  2.	
  For	
  four	
  of	
  the	
  biomarkers	
  we	
  examined,	
  levels	
  either	
  did	
  

not	
  change	
  or	
  changed	
  in	
  a	
  direction	
  counter	
  to	
  published	
  associations	
  with	
  age-­‐related	
  chronic	
  

disease:	
  White	
  blood	
  cell	
  count	
  and	
  CRP	
  levels	
  did	
  not	
  change,	
  HDL	
  cholesterol	
  increased	
  

modestly,	
  and	
  apolipoprotein	
  B100/A1	
  ratio	
  declined.	
  However,	
  slopes	
  for	
  these	
  biomarkers	
  did	
  

show	
  the	
  expected	
  pattern	
  of	
  correlation	
  with	
  other	
  biomarkers.	
  For	
  example,	
  Study	
  members	
  

whose	
  apolipoprotein	
  B100/A1	
  ratio	
  increased	
  during	
  the	
  follow-­‐up	
  period	
  also	
  showed	
  

increasing	
  adiposity,	
  declining	
  lung	
  function,	
  and	
  increasing	
  systemic	
  inflammation.	
  	
  

In	
  the	
  third	
  step,	
  we	
  combined	
  information	
  from	
  the	
  slopes	
  of	
  the	
  18	
  biomarkers	
  to	
  

calculate	
  each	
  Study	
  member’s	
  personal	
  “pace	
  of	
  aging.”	
  Because	
  we	
  did	
  not	
  have	
  a	
  priori	
  basis	
  

for	
  weighting	
  differential	
  contributions	
  of	
  the	
  biomarkers	
  to	
  an	
  overall	
  pace	
  of	
  aging	
  measure,	
  

we	
  combined	
  information	
  using	
  a	
  unit-­‐weighting	
  scheme.	
  (All	
  biomarkers	
  were	
  standardized	
  to	
  

have	
  mean=0,	
  SD=1	
  based	
  on	
  their	
  age-­‐26	
  distributions,	
  so	
  slopes	
  were	
  denominated	
  in	
  

comparable	
  units).	
  We	
  calculated	
  each	
  study	
  member’s	
  Pace	
  of	
  Aging	
  as	
  the	
  sum	
  of	
  age-­‐

dependent	
  annual	
  changes	
  in	
  biomarker	
  Z-­‐scores:	
  𝑃𝑎𝑐𝑒  𝑜𝑓  𝑎𝑔𝑖𝑛𝑔! = 𝜇!!"!"
!!! ,	
  where	
  μ1iB	
  is	
  

the	
  slope	
  of	
  biomarker	
  ‘B’	
  for	
  individual	
  ‘i’.	
  Pace	
  of	
  Aging	
  was	
  normally	
  distributed	
  in	
  the	
  cohort	
  

(M=0.70	
  age-­‐26	
  SD	
  units,	
  SD=0.29).a	
  	
  

Because	
  the	
  Dunedin	
  birth	
  cohort	
  represents	
  its	
  population,	
  its	
  mean	
  and	
  distribution	
  

represent	
  population	
  norms.	
  We	
  used	
  these	
  norms	
  to	
  scale	
  the	
  Pace	
  of	
  Aging	
  to	
  reflect	
  

physiological	
  change	
  relative	
  to	
  the	
  passage	
  of	
  time.	
  We	
  set	
  the	
  cohort	
  mean	
  Pace	
  of	
  Aging	
  as	
  a	
  

reference	
  value	
  equivalent	
  to	
  the	
  physiological	
  change	
  expected	
  during	
  a	
  single	
  chronological	
  

year.	
  Using	
  this	
  reference	
  value,	
  we	
  rescaled	
  Pace	
  of	
  Aging	
  in	
  terms	
  of	
  years	
  of	
  physiological	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
a	
  We	
  do	
  not	
  use	
  this	
  variance	
  to	
  estimate	
  a	
  confidence	
  interval	
  around	
  a	
  person’s	
  Pace	
  of	
  Aging	
  because	
  it	
  does	
  
not	
  take	
  into	
  account	
  correlations	
  among	
  biomarker	
  slopes	
  and	
  would	
  yield	
  an	
  underestimate	
  of	
  the	
  standard	
  
error.	
  Taking	
  account	
  of	
  correlations	
  among	
  biomarker	
  slopes	
  ideally	
  would	
  involve	
  joint	
  estimation	
  of	
  the	
  18	
  
biomarker	
  models.	
  However,	
  this	
  is	
  not	
  possible	
  with	
  currently	
  available	
  tools	
  (51).	
  Datasets	
  with	
  repeated	
  
measures	
  of	
  multiple	
  biomarkers	
  are	
  becoming	
  available.	
  We	
  expect	
  that	
  analyses	
  of	
  aging	
  will	
  soon	
  incorporate	
  
longitudinal	
  repeated	
  measures	
  of	
  biomarkers	
  to	
  track	
  change.	
  We	
  also	
  expect	
  that	
  analyses	
  of	
  aging	
  will	
  seek	
  to	
  
incorporate	
  multiple	
  biomarkers	
  to	
  track	
  change	
  across	
  different	
  organ	
  systems.	
  New	
  statistical	
  methods	
  will	
  be	
  
needed	
  to	
  estimate	
  asymptotically	
  correct	
  standard	
  errors	
  for	
  the	
  purposes	
  of	
  developing	
  confidence	
  intervals	
  
around	
  a	
  person’s	
  Pace	
  of	
  Aging	
  score.	
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change	
  per	
  chronological	
  year.	
  On	
  this	
  scale,	
  cohort	
  members	
  ranged	
  in	
  their	
  Pace	
  of	
  Aging	
  

from	
  near	
  zero	
  years	
  of	
  physiological	
  change	
  per	
  chronological	
  year	
  to	
  nearly	
  three	
  years	
  of	
  

physiological	
  change	
  per	
  chronological	
  year	
  (Supplemental	
  Figure	
  1).	
  	
  

	
  

Measuring	
  diminished	
  physical	
  capacity	
  at	
  age	
  38	
  years.	
  	
  	
  

Physical	
  Functioning.	
  We	
  employed	
  three	
  measures.	
  First,	
  we	
  measured	
  balance	
  as	
  the	
  

maximum	
  time	
  achieved	
  across	
  three	
  trials	
  of	
  the	
  Unipedal	
  Stance	
  Test	
  (with	
  eyes	
  closed)	
  (52–

54).	
  Second,	
  we	
  measured	
  grip	
  strength	
  with	
  dominant	
  hand	
  (elbow	
  held	
  at	
  90°,	
  upper	
  arm	
  

held	
  tight	
  against	
  the	
  trunk)	
  as	
  the	
  maximum	
  value	
  achieved	
  across	
  three	
  trials	
  using	
  a	
  Jamar	
  

digital	
  dynamometer	
  (55,	
  56).	
  Third,	
  we	
  measured	
  motor	
  functioning	
  as	
  the	
  time	
  to	
  completion	
  

of	
  the	
  Grooved	
  Pegboard	
  Test	
  with	
  the	
  non-­‐dominant	
  hand	
  (57).	
  	
  

Physical	
  Limitations.	
  Study	
  member	
  responses	
  (“limited	
  a	
  lot,”	
  “limited	
  a	
  little,”	
  “not	
  

limited	
  at	
  all”)	
  to	
  the	
  10-­‐item	
  SF-­‐36	
  physical	
  functioning	
  scale	
  (58)	
  assessed	
  their	
  difficulty	
  with	
  

completing	
  various	
  activities,	
  e.g.,	
  climbing	
  several	
  flights	
  of	
  stairs,	
  walking	
  more	
  than	
  1	
  km,	
  

participating	
  in	
  strenuous	
  sports.	
  	
  

Measuring	
  cognitive	
  functioning	
  in	
  childhood	
  and	
  at	
  age	
  38	
  years.	
  	
  

Cognitive	
  Testing.	
  IQ	
  is	
  a	
  highly	
  reliable	
  measure	
  of	
  general	
  intellectual	
  functioning	
  that	
  

captures	
  overall	
  ability	
  across	
  differentiable	
  cognitive	
  functions.	
  We	
  measured	
  IQ	
  from	
  the	
  

individually	
  administered	
  Wechsler	
  Intelligence	
  Scale	
  for	
  Children-­‐Revised	
  (WISC-­‐R;	
  averaged	
  

across	
  ages	
  7,	
  9,	
  11,	
  and	
  13)(59)	
  and	
  the	
  Wechsler	
  Adult	
  Intelligence	
  Scale-­‐IV	
  (WAIS-­‐IV;	
  age	
  38)	
  

(60),	
  both	
  with	
  M=100	
  and	
  SD=15.	
  We	
  measured	
  IQ	
  decline	
  by	
  comparing	
  scores	
  from	
  the	
  

WISC-­‐R	
  and	
  the	
  WAIS-­‐IV.	
  	
  

Retinal	
  Imaging.	
  Digital	
  fundus	
  photographs	
  were	
  taken	
  at	
  the	
  Dunedin	
  Research	
  Unit	
  

after	
  5	
  min	
  of	
  dark	
  adaptation.	
  The	
  same	
  camera	
  (Canon	
  NMR-­‐45	
  with	
  a	
  20D	
  single-­‐lens	
  reflex	
  

backing;	
  Canon,	
  Tokyo,	
  Japan)	
  was	
  used	
  for	
  all	
  photographs,	
  to	
  avoid	
  artifactual	
  variation	
  from	
  

different	
  cameras.	
  Both	
  the	
  left	
  and	
  the	
  right	
  eyes	
  were	
  photographed,	
  and	
  we	
  report	
  analyses	
  

of	
  the	
  average	
  for	
  the	
  two	
  eyes.	
  Retinal	
  photographs	
  were	
  graded	
  at	
  the	
  Singapore	
  Eye	
  

Research	
  Institute,	
  National	
  University	
  of	
  Singapore,	
  using	
  semi-­‐automated	
  computer	
  software,	
  

Singapore	
  I	
  Vessel	
  Assessment	
  (SIVA)	
  Version	
  3.0.	
  Trained	
  graders,	
  blind	
  to	
  participants’	
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characteristics,	
  used	
  the	
  SIVA	
  program	
  to	
  measure	
  the	
  retinal	
  vessel	
  diameters	
  according	
  to	
  a	
  

standardized	
  protocol	
  with	
  high	
  inter-­‐grader	
  reliability	
  (61).	
  Diameter	
  (or	
  caliber)	
  denotes	
  the	
  

size	
  of	
  the	
  lumen,	
  which	
  is	
  the	
  internal	
  space	
  of	
  the	
  vessel.	
  Measurements	
  were	
  made	
  for	
  

arterioles	
  and	
  venules	
  where	
  they	
  passed	
  through	
  a	
  region	
  located	
  0.50	
  to	
  2.00	
  disk	
  diameters	
  

from	
  the	
  optic	
  disk	
  margin	
  (62).	
  Vessel	
  calibers	
  were	
  based	
  on	
  the	
  six	
  largest	
  arterioles	
  and	
  

venules	
  passing	
  though	
  this	
  region	
  and	
  were	
  summarized	
  as	
  central	
  retinal	
  artery	
  equivalent	
  

(CRAE)	
  and	
  central	
  retinal	
  vein	
  equivalent	
  (CRVE)	
  using	
  the	
  revised	
  Knudtson-­‐Parr-­‐Hubbard	
  

formula	
  (61,	
  63).	
  

Arteriolar	
  and	
  venular	
  calibers	
  were	
  normally	
  distributed	
  within	
  our	
  population-­‐

representative	
  cohort.	
  The	
  mean	
  arteriolar	
  caliber	
  was	
  137.33	
  measuring	
  units	
  (SD=10.86,	
  

median=137.30,	
  range=105.66–179.47),	
  and	
  the	
  mean	
  venular	
  caliber	
  was	
  196.20	
  measuring	
  

units	
  (SD=14.83,	
  median=195.51,	
  range=141.07–245.68).	
  Before	
  all	
  analyses,	
  arteriolar	
  and	
  

venular	
  caliber	
  were	
  each	
  adjusted	
  for	
  the	
  effect	
  of	
  the	
  other	
  vessel,	
  as	
  recommended	
  (64,	
  65),	
  

in	
  order	
  to	
  isolate	
  the	
  unique	
  effects	
  for	
  each	
  vessel	
  and	
  adjust	
  for	
  any	
  potential	
  effects	
  of	
  

refractive	
  errors	
  (66).	
  	
  

Measuring	
  self-­‐perceptions	
  of	
  health	
  and	
  others’	
  perceptions	
  of	
  aging	
  at	
  age	
  38	
  years.	
  	
  

Self	
  Rated	
  Health.	
  Study	
  members	
  rated	
  their	
  health	
  on	
  a	
  scale	
  of	
  1-­‐5	
  (poor,	
  fair,	
  good,	
  

very	
  good,	
  or	
  excellent).	
  

Facial	
  Aging.	
  We	
  took	
  two	
  measurements	
  of	
  perceived	
  age	
  based	
  on	
  facial	
  photographs.	
  

First,	
  Age	
  Range	
  was	
  assessed	
  by	
  an	
  independent	
  panel	
  of	
  4	
  Duke	
  University	
  undergraduate	
  

raters.	
  	
  Raters	
  were	
  presented	
  with	
  standardized	
  (non-­‐smiling)	
  facial	
  photographs	
  of	
  Study	
  

members	
  (taken	
  with	
  a	
  Canon	
  PowerShot	
  G11	
  camera	
  with	
  an	
  optical	
  zoom,	
  Canon	
  Inc.,	
  Tokyo,	
  

Japan)	
  and	
  were	
  kept	
  blind	
  to	
  their	
  actual	
  age.	
  	
  Photos	
  were	
  divided	
  into	
  sex-­‐segregated	
  

slideshow	
  batches	
  containing	
  approximately	
  50	
  photos,	
  viewed	
  for	
  10s	
  each.	
  	
  Raters	
  were	
  

randomized	
  to	
  viewing	
  the	
  slideshow	
  batches	
  in	
  either	
  forward	
  progression	
  or	
  backwards	
  

progression.	
  They	
  used	
  a	
  Likert	
  scale	
  to	
  categorize	
  each	
  Study	
  member	
  into	
  a	
  5-­‐year	
  age	
  range	
  

(i.e.,	
  from	
  20-­‐24	
  years	
  old	
  up	
  to	
  65-­‐70	
  years).	
  	
  Scores	
  for	
  each	
  study	
  member	
  were	
  averaged	
  

across	
  all	
  raters	
  (α=0.71).	
  	
  The	
  second	
  measure,	
  Relative	
  Age,	
  was	
  assessed	
  by	
  a	
  different	
  panel	
  

of	
  4	
  Duke	
  University	
  undergraduate	
  raters.	
  The	
  raters	
  were	
  told	
  that	
  all	
  photos	
  were	
  of	
  people	
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aged	
  38	
  years	
  old.	
  	
  Raters	
  then	
  used	
  a	
  7-­‐item	
  Likert	
  scale	
  to	
  assign	
  a	
  “relative	
  age”	
  to	
  each	
  

study	
  member	
  (1=”young	
  looking”,	
  7=”old	
  looking”).	
  	
  Scores	
  for	
  each	
  study	
  member	
  were	
  

averaged	
  across	
  all	
  raters	
  (α=0.72).	
  	
  Age	
  Range	
  and	
  Relative	
  Age	
  were	
  highly	
  correlated	
  

(r=0.73).	
  	
  To	
  derive	
  a	
  measure	
  of	
  perceived	
  age	
  at	
  38	
  years,	
  we	
  standardized	
  and	
  averaged	
  both	
  

Age	
  Range	
  and	
  Relative	
  Age	
  scores	
  to	
  create	
  Facial	
  Age	
  at	
  38	
  years.	
  

	
  
Analysis	
  
	
  
For	
  analysis,	
  validation	
  measures	
  were	
  standardized	
  to	
  have	
  mean=0,	
  SD=1.	
  For	
  measures	
  of	
  

physical	
  functioning,	
  physical	
  activity,	
  physical	
  limitations,	
  retinal	
  vessel	
  calibers,	
  and	
  self-­‐rated	
  

health,	
  standardization	
  was	
  conducted	
  separately	
  for	
  men	
  and	
  women	
  to	
  account	
  for	
  different	
  

means/SDs	
  between	
  the	
  sexes.	
  Cognitive	
  test	
  scores	
  and	
  facial	
  ages	
  were	
  similarly	
  distributed	
  

in	
  men	
  and	
  women.	
  Regression	
  analyses	
  were	
  adjusted	
  for	
  sex.	
  Thus,	
  effect-­‐sizes	
  reported	
  for	
  

associations	
  between	
  aging	
  measures	
  and	
  validation	
  measures	
  represent	
  population	
  average	
  

effects	
  independent	
  of	
  sex.	
  Effect-­‐size	
  estimates	
  were	
  calculated	
  as	
  standardized	
  beta-­‐

coefficients	
  from	
  linear	
  regressions	
  (equivalent	
  to	
  Pearson’s	
  r).	
  	
  

To	
  test	
  whether	
  associations	
  between	
  Pace	
  of	
  Aging	
  and	
  the	
  validation	
  metrics	
  were	
  

dependent	
  on	
  any	
  single	
  biomarker,	
  we	
  conducted	
  a	
  leave-­‐one-­‐out	
  sensitivity	
  analysis.	
  In	
  the	
  

leave-­‐one-­‐out	
  analysis,	
  we	
  re-­‐calculated	
  Pace	
  of	
  Aging	
  leaving	
  out	
  each	
  biomarker	
  in	
  turn.	
  Full	
  

Pace	
  of	
  Aging	
  and	
  Leave-­‐One-­‐Out	
  Pace	
  of	
  Aging	
  effect-­‐sizes	
  from	
  models	
  predicting	
  Biological	
  

Age	
  and	
  each	
  validation	
  metric	
  are	
  reported	
  in	
  Supplemental	
  Figure	
  2.	
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Figure	
  S1.	
  Distribution	
  of	
  Pace	
  of	
  Aging	
  in	
  the	
  Dunedin	
  Cohort.	
  Pace	
  of	
  Aging	
  is	
  denominated	
  
in	
  years	
  of	
  physiological	
  change	
  per	
  chronological	
  year.	
  Pace	
  of	
  Aging	
  of	
  1	
  indicates	
  a	
  cohort	
  
member	
  who	
  experienced	
  one	
  year	
  of	
  physiological	
  change	
  per	
  chronological	
  year	
  (the	
  cohort	
  
average).	
  Pace	
  of	
  Aging	
  of	
  two	
  indicates	
  a	
  cohort	
  member	
  aging	
  at	
  a	
  rate	
  of	
  two	
  years	
  of	
  
physiological	
  change	
  per	
  chronological	
  year,	
  twice	
  as	
  fast	
  as	
  the	
  population	
  norm.	
  Pace	
  of	
  Aging	
  
equal	
  to	
  zero	
  indicates	
  a	
  cohort	
  member	
  whose	
  physiology	
  remained	
  unchanged	
  between	
  ages	
  
26	
  and	
  38.	
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Figure	
  S2.	
  Pace	
  of	
  Aging	
  and	
  Leave-­‐One-­‐Out	
  Pace	
  of	
  Aging	
  effect	
  sizes	
  for	
  models	
  predicting	
  
Biological	
  Age	
  and	
  validation	
  metrics.	
  The	
  graph	
  shows	
  effect	
  sizes	
  for	
  the	
  full	
  Pace	
  of	
  Aging	
  
(yellow	
  bars)	
  and	
  for	
  Leave-­‐One-­‐Out	
  Pace	
  of	
  Aging	
  measures	
  calculated	
  after	
  omitting	
  each	
  
biomarker	
  in	
  turn	
  (blue	
  bars).	
  For	
  example,	
  the	
  HbA1C	
  Leave-­‐One-­‐Out	
  Pace	
  of	
  Aging	
  was	
  
calculated	
  from	
  the	
  slopes	
  of	
  the	
  other	
  17	
  biomarkers.	
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Table	
  S1.	
  Measurement	
  of	
  biomarkers	
  used	
  to	
  calculate	
  Biological	
  Age	
  and	
  Pace	
  of	
  Aging	
  
measures.	
  Measures	
  were	
  taken	
  in	
  counterbalanced	
  order	
  across	
  Study	
  members	
  with	
  the	
  
exception	
  of	
  blood,	
  which	
  was	
  drawn	
  at	
  the	
  same	
  time	
  of	
  day	
  for	
  all	
  Study	
  members	
  at	
  all	
  three	
  
ages.	
  Women	
  who	
  were	
  pregnant	
  at	
  the	
  time	
  of	
  a	
  given	
  assessment	
  were	
  excluded	
  from	
  that	
  
wave	
  of	
  data	
  collection.	
  	
  
Glycated	
  
hemoglobin	
  level	
  
(HbA1C)	
  

Serum	
  glycated	
  hemoglobin	
  concentration	
  (expressed	
  as	
  a	
  percentage	
  of	
  
total	
  hemoglobin)	
  was	
  measured	
  by	
  ion	
  exchange	
  high	
  performance	
  liquid	
  
chromatography	
  (Variant	
  II:	
  	
  BioRad,	
  Hercultes,	
  Calif.),	
  a	
  method	
  certified	
  by	
  
the	
  US	
  National	
  Glycohemoglobin	
  Standardization	
  Program	
  
(http://www.ngsp.org/).	
  

Cardiorespiratory	
  
Fitness	
  

Cardiorespiratory	
  fitness	
  was	
  assessed	
  by	
  measuring	
  heart	
  rate	
  in	
  response	
  
to	
  a	
  submaximal	
  exercise	
  test	
  on	
  a	
  friction-­‐braked	
  cycle	
  ergometer.	
  
Dependent	
  on	
  the	
  extent	
  to	
  which	
  heart	
  rate	
  increased	
  during	
  a	
  2-­‐min	
  50	
  W	
  
warm-­‐up,	
  the	
  workload	
  was	
  adjusted	
  to	
  elicit	
  a	
  steady	
  heart-­‐rate	
  in	
  the	
  
range	
  130–170	
  beats	
  per	
  minute.	
  After	
  a	
  further	
  6-­‐min	
  constant	
  power	
  
output	
  stage,	
  the	
  maximum	
  heart	
  rate	
  was	
  recorded	
  and	
  used	
  to	
  calculate	
  
predicted	
  maximum	
  oxygen	
  uptake	
  adjusted	
  for	
  body	
  weight	
  in	
  milliliters	
  
per	
  minute	
  per	
  kilogram	
  (VO2max)	
  according	
  to	
  standard	
  protocols	
  (67).	
  

Anthropometry	
   Height	
  was	
  measured	
  to	
  the	
  nearest	
  millimeter	
  using	
  a	
  portable	
  
stadiometer	
  (Harpenden;	
  Holtain,	
  Ltd).	
  Weight	
  was	
  measured	
  to	
  the	
  
nearest	
  0.1	
  kg	
  using	
  calibrated	
  scales.	
  Individuals	
  were	
  weighed	
  in	
  light	
  
clothing.	
  Body	
  mass	
  index	
  (BMI)	
  was	
  calculated.	
  Waist	
  girth	
  was	
  the	
  
perimeter	
  at	
  the	
  level	
  of	
  the	
  noticeable	
  waist	
  narrowing	
  located	
  between	
  
the	
  costal	
  border	
  and	
  the	
  iliac	
  crest.	
  Hip	
  girth	
  was	
  taken	
  as	
  the	
  perimeter	
  at	
  
the	
  level	
  of	
  the	
  greatest	
  protuberance	
  and	
  at	
  about	
  the	
  symphysion	
  pubic	
  
level	
  anteriorly.	
  Measurements	
  were	
  repeated	
  and	
  the	
  average	
  used	
  to	
  
calculate	
  Waist:hip	
  ratio.	
  

Lung	
  function	
   We	
  calculated	
  post-­‐albuterol	
  forced	
  expiratory	
  volume	
  in	
  one	
  second	
  (FEV1)	
  
and	
  the	
  ratio	
  of	
  FEV1	
  to	
  forced	
  vital	
  capacity	
  (FVC)	
  using	
  measurements	
  
from	
  spirometry	
  conducted	
  with	
  a	
  Sensormedics	
  body	
  plethysmograph	
  
(Sensormedics	
  Corporation,	
  Yorba	
  Linda,	
  CA,	
  USA).	
  

Blood	
  pressure	
   Systolic	
  and	
  diastolic	
  blood	
  pressure	
  were	
  assessed	
  according	
  to	
  standard	
  
protocols	
  with	
  a	
  Hawksley	
  random-­‐zero	
  sphygmomanometer	
  with	
  a	
  
constant	
  deflation	
  valve.	
  Mean	
  arterial	
  pressure	
  (MAP)	
  was	
  calculated	
  using	
  
the	
  formula	
  Diastolic	
  Pressure+1/3(Systolic	
  Pressure	
  -­‐	
  Diastolic	
  Pressure).	
  

Leukocyte	
  
telomere	
  length	
  

Leukocyte	
  DNA	
  was	
  extracted	
  from	
  blood	
  using	
  standard	
  procedures	
  (68,	
  
69).	
  DNA	
  was	
  stored	
  at	
  -­‐80°C.	
  All	
  DNA	
  samples	
  were	
  assayed	
  for	
  leukocyte	
  
telomere	
  length	
  at	
  the	
  same	
  time.	
  Leukocyte	
  telomere	
  length	
  was	
  
measured	
  using	
  a	
  validated	
  quantitative	
  PCR	
  method	
  (70),	
  as	
  previously	
  
described,(71)	
  which	
  determines	
  mean	
  telomere	
  length	
  across	
  all	
  
chromosomes	
  for	
  all	
  cells	
  sampled.	
  	
  The	
  method	
  involves	
  two	
  quantitative	
  
PCR	
  reactions	
  for	
  each	
  subject;	
  one	
  for	
  a	
  single-­‐copy	
  gene	
  (S)	
  and	
  the	
  other	
  
in	
  the	
  telomeric	
  repeat	
  region	
  (T).	
  All	
  DNA	
  samples	
  were	
  run	
  in	
  triplicate	
  for	
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telomere	
  and	
  single-­‐copy	
  reactions.	
  Measurement	
  artifacts	
  (e.g.,	
  
differences	
  in	
  plate	
  conditions)	
  may	
  lead	
  to	
  spurious	
  results	
  when	
  
comparing	
  leukocyte	
  telomere	
  length	
  measured	
  on	
  the	
  same	
  individual	
  at	
  
different	
  ages.	
  To	
  eliminate	
  such	
  artifacts,	
  we	
  assayed	
  DNA	
  triplicates	
  from	
  
the	
  same	
  individual	
  from	
  all	
  time	
  points,	
  on	
  the	
  same	
  plate.	
  CV	
  for	
  triplicate	
  
Ct	
  values	
  was	
  0.81%	
  for	
  the	
  telomere	
  (T)	
  and	
  0.48%	
  for	
  the	
  single-­‐copy	
  gene	
  
(S).	
  	
  

Creatinine	
  
clearance	
  

Serum	
  creatinine	
  (mmol/L)	
  was	
  measured	
  by	
  kinetic	
  colorimetric	
  	
  assay	
  on	
  a	
  
Hitachi	
  917	
  analyzer	
  (age	
  32)	
  and	
  Modular	
  P	
  analyzer	
  (age	
  38)	
  (Roche	
  
Diagnostics,	
  Mannheim,	
  Germany).	
  For	
  Pace	
  of	
  Aging	
  analysis,	
  creatinine	
  
was	
  measured	
  as	
  creatinine	
  clearance,	
  calculated	
  using	
  a	
  modified	
  
Cockcroft-­‐Gault	
  equation.	
  The	
  original	
  equation	
  [(140-­‐age)	
  x	
  (Wt	
  in	
  kg)	
  x	
  
(0.85	
  if	
  female)	
  /	
  (72	
  x	
  Creatinine)]	
  (72)	
  was	
  modified	
  as	
  follows:	
  (73,	
  74)	
  For	
  
individuals	
  with	
  BMI	
  of	
  18-­‐23,	
  we	
  substituted	
  “ideal	
  body	
  weight”	
  in	
  place	
  
of	
  weight	
  [for	
  men,	
  Ideal	
  Body	
  Weight	
  =	
  50+(2.3x	
  Ht	
  in	
  inches	
  -­‐	
  60);	
  for	
  
women	
  Ideal	
  Body	
  Weight	
  =	
  50+(2.3x	
  Ht	
  in	
  inches	
  -­‐	
  60)].	
  For	
  individuals	
  with	
  
BMI≥23,	
  we	
  substituted	
  “adjusted	
  body	
  weight”	
  for	
  weight	
  (Adjusted	
  Body	
  
Weight	
  =	
  Ideal	
  Body	
  Weight	
  +	
  0.4	
  x	
  Wt	
  in	
  kg	
  -­‐	
  Ideal	
  Body	
  Weight).	
  

Urea	
  nitrogen	
  	
   Serum	
  urea	
  nitrogen	
  (mmol/L)	
  was	
  measured	
  by	
  kinetic	
  UV	
  assay	
  at	
  age	
  26	
  
(Hitachi	
  917	
  analyser)	
  and	
  by	
  kinetic	
  colorimetric	
  assay	
  at	
  ages	
  32	
  and	
  38	
  
(Hitachi	
  917	
  analyzer	
  at	
  age	
  32,	
  Modular	
  P	
  analyzer	
  at	
  age	
  38).	
  	
  

Lipoprotein	
  (a)	
  	
   Serum	
  lipoprotein	
  (a)	
  (mg/L)	
  was	
  measured	
  by	
  immunoturbidimetric	
  assay	
  
on	
  a	
  Hitachi	
  917	
  analyzer	
  (ages	
  26-­‐32)	
  and	
  Modular	
  P	
  analyzer	
  (age	
  38).	
  	
  

Non-­‐fasting	
  
Triglycerides,	
  
Total	
  cholesterol,	
  
and	
  High-­‐density	
  
lipoprotein	
  (HDL)	
  
cholesterol	
  

Serum	
  non-­‐fasting	
  triglyceride,	
  total	
  cholesterol,	
  and	
  high-­‐density	
  
lipoprotein	
  levels	
  (mmol/L)	
  were	
  measured	
  by	
  colorimetric	
  assay	
  on	
  a	
  
Hitachi	
  917	
  analyzer	
  (ages	
  26-­‐32)	
  and	
  Modular	
  P	
  analyzer	
  (age	
  38).	
  	
  

Gum	
  health	
  
(combined	
  
attachment	
  loss)	
  

Examinations	
  were	
  conducted	
  using	
  calibrated	
  dental	
  examiners;	
  three	
  sites	
  
(mesiobuccal,	
  buccal,	
  and	
  distolingual)	
  per	
  tooth	
  were	
  examined,	
  and	
  
gingival	
  recession	
  (the	
  distance	
  in	
  millimeters	
  from	
  the	
  cementoenamel	
  
junction	
  to	
  the	
  gingival	
  margin)	
  and	
  probing	
  depth	
  (the	
  distance	
  from	
  the	
  
probe	
  tip	
  to	
  the	
  gingival	
  margin)	
  were	
  recorded	
  using	
  a	
  PCP-­‐2	
  probe.	
  The	
  
combined	
  attachment	
  loss	
  for	
  each	
  site	
  was	
  computed	
  by	
  summing	
  gingival	
  
recession	
  and	
  probing	
  depth	
  (third	
  molars	
  were	
  not	
  included).	
  

White	
  blood	
  cell	
  
count	
  

Whole	
  blood	
  white	
  blood	
  cell	
  counts	
  (x109/L)	
  were	
  measured	
  by	
  flow-­‐
cytometry	
  with	
  a	
  Coulter	
  STKS	
  (Coulter	
  Corporation,	
  Miami,	
  FL)	
  (age	
  26),	
  a	
  
Sysmex	
  XE2100	
  (Sysmex	
  Corporation,	
  Japan)	
  (age	
  32)	
  and	
  a	
  Sysmex	
  	
  XE5000	
  
(Sysmex	
  Corporation,	
  Japan)	
  (age	
  38).	
  Counts	
  were	
  log-­‐transformed	
  for	
  
analysis.	
  	
  

C-­‐reactive	
  
protein	
  (hsCRP)	
  

Serum	
  C-­‐reactive	
  protein	
  (mg/L)	
  was	
  measured	
  by	
  high	
  sensitivity	
  
immunoturbidimetric	
  assay	
  on	
  a	
  Hitachi	
  917	
  analyzer	
  (age	
  32)	
  and	
  Modular	
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P	
  analyzer	
  (age	
  38).	
  Values	
  were	
  log	
  transformed	
  for	
  analysis.	
  
Apolipoprotein	
  
A1	
  

Serum	
  apolipoprotein	
  A1	
  (g/L)	
  was	
  measured	
  by	
  immunoturbidimetric	
  
assay	
  on	
  a	
  Hitachi	
  917	
  analyzer	
  (ages	
  26-­‐32)	
  and	
  Modular	
  P	
  analyzer	
  (age	
  
38).	
  	
  

Apolipoprotein	
  
B100	
  

Serum	
  apolipoprotein	
  B100	
  (g/L)	
  was	
  measured	
  by	
  immunoturbidimetric	
  
assay	
  on	
  a	
  Hitachi	
  917	
  analyzer	
  (ages	
  26-­‐32)	
  and	
  Modular	
  P	
  analyzer	
  (age	
  
38).	
  	
  

Albumin	
   Serum	
  albumin	
  (g/L)	
  was	
  measured	
  by	
  immunoturbidimetric	
  assay	
  on	
  a	
  
Hitachi	
  917	
  analyzer	
  (ages	
  26-­‐32)	
  and	
  Modular	
  P	
  analyzer	
  (age	
  38).	
  	
  

Alkaline	
  
phosphatase	
  

Serum	
  alkaline	
  phosphatase,	
  ALP	
  (U/L)	
  was	
  measured	
  by	
  enzymatic	
  
colorimetric	
  assay	
  on	
  a	
  Hitachi	
  917	
  analyzer	
  (ages	
  26-­‐32)	
  and	
  Modular	
  P	
  
analyzer	
  (age	
  38).	
  

Cytomegalovirus	
  
Optical	
  Density	
  

Plasma	
  cytomegalovirus	
  (CMV)	
  IgG	
  antibodies	
  (IU/ml)	
  were	
  measured	
  by	
  
EIA	
  assay	
  (Diamedix,	
  FL,	
  USA)	
  on	
  a	
  Molecular	
  Devices	
  Spectramax384	
  plate	
  
reader	
  (Molecular	
  Devices,	
  CA,	
  USA).	
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Table	
  S2.	
  Pairwise	
  correlations	
  among	
  Study-­‐member	
  specific	
  intercepts	
  (Panel	
  A)	
  and	
  slopes	
  
(Panel	
  B)	
  for	
  18	
  biomarkers.	
  Correlations	
  with	
  r>0.05	
  are	
  highlighted	
  in	
  yellow.	
  Correlations	
  
with	
  r>0.1	
  are	
  highlighted	
  in	
  pink.	
  	
  
	
  
Panel	
  A.	
  	
  

	
  
Panel	
  B.	
  	
  

	
  
	
  

	
  

	
  

Biomarker)Intercept)
Correlations

Glycated)Hem
oglobin

W
aist3Hip)Ratio

Cardiorespiratory)Fitness

FEV1/FVC)ratio

FEV1

M
ean)Arterial)Pressure

BM
I

Telom
ere)Length

U
rea)N

itrogen

Gum
s

Lipoprotein)(a)

Triglycerides

Cholesterol

Creatinine)Clearance

W
hite)Blood)Cell)Count

CRP

HDL)Cholesterol

ApoB100/A1)Ratio

Glycated)Hemoglobin
Waist3Hip)Ratio 0.1
Cardiorespiratory)Fitness 0.1 0.4
FEV1/FVC)ratio 0.0 0.1 0.1
FEV1 0.1 0.1 0.0 0.3
Mean)Arterial)Pressure 0.1 0.2 0.3 0.0 0.0
BMI 0.1 0.5 0.8 0.1 0.1 0.2
Telomere)Length 0.1 0.0 0.1 0.0 0.1 0.1 0.0
Urea)Nitrogen 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Gums 0.1 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0
Lipoprotein)(a) 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0
Triglycerides 0.1 0.4 0.3 0.0 0.1 0.2 0.3 0.1 0.1 0.0 0.1
Cholesterol 0.1 0.2 0.2 0.0 0.1 0.1 0.2 0.0 0.0 0.0 0.2 0.4
Creatinine)Clearance 0.0 30.1 30.3 0.0 0.1 0.0 30.2 0.1 0.1 0.0 0.0 0.0 0.0
White)Blood)Cell)Count 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.0 0.0 0.3 0.0 0.2 0.1 0.0
CRP 0.0 0.0 0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 30.1 0.0
HDL)Cholesterol 0.0 0.3 0.3 0.0 0.1 0.1 0.3 0.1 0.0 0.1 0.0 0.4 30.1 30.1 0.1 0.0
ApoB100/A1)Ratio 0.1 0.3 0.4 0.1 0.1 0.1 0.4 0.1 0.0 0.1 0.1 0.5 0.7 0.0 0.2 0.0 0.6

Biomarker)Slope)
Correlations

Glycated)Hem
oglobin

W
aist3Hip)Ratio

Cardiorespiratory)Fitness

FEV1/FVC)ratio

FEV1

M
ean)Arterial)Pressure

BM
I

Telom
ere)Length

U
rea)N

itrogen

Gum
s

Lipoprotein)(a)

Triglycerides

Cholesterol

Creatinine)Clearance

W
hite)Blood)Cell)Count

CRP

HDL)Cholesterol

ApoB100/A1)Ratio

Slope 0.13 0.10 0.10 0.07 0.06 0.06 0.04 0.03 0.03 0.04 0.03 0.02 0.02 0.03 0.00 30.01 30.02 30.03
Glycated)Hemoglobin
Waist3Hip)Ratio 0.2
Cardiorespiratory)Fitness 0.0 0.2
FEV1/FVC)ratio 0.0 30.1 0.1
FEV1 0.1 0.0 0.1 0.4
Mean)Arterial)Pressure 0.1 0.2 0.2 30.1 0.0
BMI 0.1 0.4 0.6 30.1 0.1 0.3
Telomere)Length 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Urea)Nitrogen 0.0 0.0 0.0 0.0 30.1 0.0 0.0 30.1
Gums 0.1 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0
Lipoprotein)(a) 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0
Triglycerides 0.2 0.3 0.2 0.0 0.1 0.2 0.4 0.0 0.1 0.0 0.0
Cholesterol 0.1 0.1 0.3 0.1 0.1 0.2 0.2 0.0 0.0 0.0 0.1 0.3
Creatinine)Clearance 0.0 0.0 30.1 30.1 30.1 0.0 30.2 0.0 0.1 0.0 0.0 30.2 30.1
White)Blood)Cell)Count 0.2 0.1 0.1 0.1 0.0 0.1 0.1 0.0 0.0 0.1 0.0 0.2 0.2 0.0
CRP 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 30.1 0.0 0.0 0.0 0.0 30.1 0.0
HDL)Cholesterol 0.1 0.2 0.2 0.0 0.1 0.0 0.4 0.0 0.0 0.0 30.1 0.4 30.1 30.1 0.1 0.1
ApoB100/A1)Ratio 0.1 0.2 0.3 0.1 0.1 0.1 0.4 0.0 30.1 0.0 0.0 0.3 0.4 30.1 0.1 0.1 0.5
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Table	
  S3.	
  Associations	
  between	
  measures	
  of	
  biological	
  aging	
  and	
  cognitive	
  functions	
  
measured	
  by	
  the	
  Wechsler	
  Intelligence	
  Test	
  Subtests.	
  Subtests	
  are	
  divided	
  into	
  tests	
  of	
  
crystalized	
  and	
  fluid	
  dimensions	
  of	
  intelligence.	
  The	
  first	
  set	
  of	
  columns	
  labeled	
  “Age	
  38	
  
Performance”	
  present	
  results	
  from	
  analysis	
  of	
  cognitive	
  test	
  performance	
  when	
  Study	
  members	
  
were	
  aged	
  38	
  years.	
  The	
  second	
  set	
  of	
  columns	
  labeled	
  “Change	
  from	
  Childhood”	
  present	
  
results	
  from	
  identical	
  models	
  that	
  also	
  include	
  control	
  variables	
  measuring	
  the	
  Study	
  members’	
  
performance	
  on	
  the	
  same	
  cognitive	
  test	
  when	
  they	
  children.	
  Models	
  in	
  the	
  second	
  set	
  of	
  
columns	
  test	
  if	
  faster	
  biological	
  aging	
  is	
  associated	
  with	
  cognitive	
  change	
  since	
  childhood.	
  In	
  the	
  
top	
  set	
  of	
  rows,	
  Biological	
  Age	
  is	
  the	
  predictor	
  and	
  cognitive	
  test	
  performance	
  is	
  the	
  outcome.	
  
In	
  the	
  bottom	
  set	
  of	
  rows,	
  Pace	
  of	
  Aging	
  is	
  the	
  predictor	
  and	
  cognitive	
  test	
  performance	
  is	
  the	
  
outcome.	
  
	
  

	
  

	
  

Age$38$Performance Change$from$Childhood
Subtest r p r p

Biological$Age$Analysis
Tests%of%Crystalized%Intelligence

Information 50.07 0.046 0.00 0.912
Similarities 50.14 <0.001 50.06 0.045
Vocabulary 50.13 <0.001 50.06 0.026

Tests%of%Fluid%Intelligence

Digit%Symbol%Coding 50.13 <0.001 50.10 <0.001
Arithmetic 50.11 <0.001 50.05 0.042
Block%Design 50.16 <0.001 50.07 0.016
Picture%Completion 50.10 0.005 50.06 0.079

Pace$of$Aging$Analysis
Tests%of%Crystalized%Intelligence

Information 50.15 <0.001 50.03 0.186
Similarities 50.17 <0.001 50.08 0.003
Vocabulary 50.17 <0.001 50.06 0.024

Tests%of%Fluid%Intelligence

Digit%Symbol%Coding 50.20 <0.001 50.15 <0.001
Arithmetic 50.18 <0.001 50.09 <0.001
Block%Design 50.16 <0.001 50.07 0.012
Picture%Completion 50.09 0.005 50.05 0.128


